

Fragment-based Lead Discovery Conference 2010 Philadelphia, 10th - 13th October 2010

From Druggability, to Ligand Efficiency, to the Universe of Heterocyclic Rings

Colin R Groom

Cambridge Crystallographic Data Centre

Monday 11th October Fragment Libraries and Chemical Space

www.ccdc.cam.ac.uk

The Cambridge Crystallographic Data Centre

- A non-profit, charitable institution
- Self financing and self administering
- 51 employees
- Recognised institute for postgraduate degrees of the University of Cambridge
- Objectives
 - "advancement and promotion of the science of chemistry and crystallography for the public benefit"
- Provides the Cambridge Structural Database System
- Associated software
 - GOLD, Relibase

Drug candidate attrition – the primary motivation

\mathbf{a}	
~X.	
J	

Percentage values	Oral	Non oral	Total
Ro5 pass	52	22	74
Ro5 fail	13	13	26
Total	65	35	(1194)

Hopkins, A.L., and Groom, C.R. The Druggable Genome. Nature Reviews Drug Discovery (2002), 1,727-730 Overington, J.L., Al-Lazakani, B. and Hopkins, A.L. How many drug targets are there? Nature Reviews Drug Discovery (2006), 5, 993-996

Can we start from a better place?

Can we identify small ligands?

Can we do crystallographic fragment screening

Can we do fragment-based SAR analysis?

Locating interaction sites on proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol

Proteins: Structure, Function and Genetics, 1999, 37,4, 628-640 A. C. English, S.H. Done, L.S.D. Caves, C. R. Groom, R.E. Hubbard

Experimental and computational mapping of the binding surface of a crystalline protein. Protein Engineering, 2001 14, 47-59 Andrew C. English, Colin R. Groom, and Roderick E. Hubbard

Early fragment optimisation

Early fragment optimisation

Assessing our starting point: Ligand efficiency

- The binding energy of a compound as a function of any of its properties
- Originally expressed as function of number of heavy atoms
- Can be surface area, lipophilicity etc
- What efficiency do drugs bind with?
- How efficient is our hit / lead?
- What ligand efficiencies have been observed against target X

Ligand binding efficiency

 We can produce figures for the binding efficiency for any ligand

-As

 $\Delta G = -RT \ln (K_i)$

- Then free energy per atom

ligand efficiency = $\Delta G / N$

Where N = number of non-hydrogen atoms

N: A surrogate for logP, logD, volume, metabolic liability, etc

Comparing ligand efficiencies

- For ligands of the same size
 - i.e. alternative leads
 - Very illuminating
- For ligands of different sizes
 - Requires a little more care...

Entropy and enthalpy

Solvent displacement from ligand and protein
Internal conformational entropy of ligand and protein
Combining two independently tumbling molecules into one

Additivity of fragments

$$\Delta G^{A} = \Delta H^{A} - T \Delta S^{A}$$

- $\Lambda G^{B} = \Delta H^{B} T \Delta S^{B}$
- $\Delta G^{C} = \Delta H^{C} T \Delta S^{C}$

 $\Delta G^{C} = \Delta H^{A} + \Delta H^{B} - T \Delta S^{C}$

 $\Delta H^{C} \cong \Delta H^{A} + \Delta H^{B}$

 $T \Delta S^{C} \cong T \Delta S^{A} \cong T \Delta S^{B}$

 $\Lambda G^{C} >> \Lambda G^{A} + \Lambda G^{B}$

- The entropic penalty due to stopping a molecule tumble is proportional to log molecular weight
 - A 500 mw ligand, binding to a 30,000 mw protein
 - ligand looses $\log(500) = 2.700$ units
 - The protein target looses log (30,000) log (30,500) = 0.007
 - Total entropic penalty (tumbling only) = 2.707
- When you sort out all the constants this is about +4 kcal/mol

- A is a 300 mw ligand binding to a 30,000 mw protein
 - Entropic penalty (tumbling only) about +4 kcal/mol
- C is a 500 mw ligand, binding to a 30,000 mw protein
 - Entropic penalty (tumbling only) about +4

A

Comparing ligand binding efficiencies

- A = 300 mw, 10 μ M Δ G^A = -6 kcal/mol – Therefore efficiency = 0.30 kcal/mol/atom
- C = 500 mw, 10 nM $\Delta G^{C} = -10$
 - Therefore efficiency = 0.30
- Conclusion
 - A and C have the same ligand efficiency?

Lets go back to efficiencies

- A = 300 mw, 10 μ M Δ G^A = -6 kcal LE= 0.30
- C = 500 mw, 10 nM ΔG^{C} = -10 LE = 0.30
- Efficiencies considering the constant entropic penalty $\Delta G^A = -6$ kcal = -10 + 4
 - Enthalpy= -10 kcal/mol
 - Enthalpic efficiency = -10 / 300 = 0.49
 - $\Delta G^{C} = -10 \text{ kcal} = -14 + 4$
 - Enthalpy= -14
 - Enthalpic efficiency = -14 / 500 = 0.37
- Revised conclusion = A is actually more efficient than C in *enthalpic terms*

Comparing Fragment A with lead C

- Say A was our fragment
 - A is 300 mw, 10 μ M Δ G = -6 kcal (-10 + 4)
 - Intrinsic efficiency = 0.49 (was 0.3)
- Say C is our lead
 - C is 500 mw, 10 nM $\Delta G = -10$ kcal (-14 + 4)
 - Intrinsic efficiency = 0.37 (was 0.3)
- To get from A to C we added B
 - B is 200 mw, it contributes –4 kcal to ΔG
 - there is no change to rigid body entropy
 - Its intrinsic efficiency is only 0.27 (was 0.3)
- The 200 mw piece we have added (B) is much less efficient than the original 300mw piece (A)

17

Messages

- Compare ligand efficiencies of different size ligands with caution
- If one 'maintains ligand efficiency' during fragment to hit process
 - The atoms added are less efficient in terms of enthalpy than the original fragment
- ITC data can contribute a tremendous amount

The chemical universe

Why Planar Heteroaromatics ?

- Tractable number
 - Allows one to see the full picture
- Pharmaceutical interest
 - Compounds get larger during 'optimisation'
 - Smaller compounds more likely to show activity
 - Focus on ligand efficiency
 - May be more 'novelisable'
 - Scaffold of molecule important for IP
 - Source of novelty of chemical series
 - Aryl bond formation allows modifications
- Planar heteroaromatics are key to a medicinal chemists thinking
 - Complete enumeration of all aromatic monocycles and bicycles
 - 5 and 6 membered rings, C,N,S,O, Neutral, Obey Hückel's rule, Only exocyclic carbonyls

Number of

VEHICLe summary

•24,867 rings

•About 500 found in drugs

Heteroaromatic Rings of the Future. William R. Pitt, David M. Parry, Benjamin G. Perry and Colin R. Groom J. Med. Chem., 2009, 52 (9), pp 2952–2963 DOI: 10.1021/jm801513z

Synthetic Accessibility

WO 2007021710

Rings of the future

- Peak of heterocyclic chemistry in 1971
 - Now 1701 examples •
- Number of new heterocycles published declining •
- The remaining ones are very precious

[1,3]Oxazolo[3,2-b][1,2,4]triazoles: a versatile synthesis of a novel heterocycle Cathorine Ball, David K, Dean', Obsier Loritout, Low W, Pater, Chatherte L, South, Strather P, Watson

COMMANDER ATOMA www.rei.orgida; | Organi; & Barinke alar Darmon Robust preparation of novel imidazo[5,1-b][1,3,4]oxadiazoles* US 2007129372 WO 9827098 A1 19980625 Tunn P. Tran, Natalini Patel, Brian Samas and Jacob R. Schwarz*; Merck & Co. Inc. Vertex (VX-745) Received 748 August 2007, Accepted 2nd Charles 2009 First published on an Advance details on the unit 15th thrasher 200 these to large property MeO

Impact of analogues

2006 ED Market

Frolicking in Patent Space - 1

Southall and Ajay J. Med. Chem. 2006, 49, 6, 2103-2109

Tautomeric Heterocyclic 'Space'

• Space is larger when we think of tautomers

*0 H-N =N 23e

A.J. Cruz-Cabeza, A. Schreyer and W.R. Pitt Annular tautomerism: experimental observations and quantum mechanics calculations J. CAMD 24, 6-7, 575-586, DOI: 10.1007/s10822-010-9345-5

Impact of tautomers

EPO 679-157 (Searle, Pfizer, Celebrex, \$2b in yr 1)

EPO 705-254 (Merck, Vioxx, \$1.5b in yr 1)

The CSD and tautomers

A. J. Cruz-Cabeza and C. R. Groom Identification, Classification and Relative Stability of Tautomers in the Cambridge Structural Database. Cryst. Eng. Comm. 2010, DOI: 10.1039/C0CE00123F

Using VEHICLe fragments to Scaffold Hop

Fragment linking using the CSD

Two fragments bound to sub-pockets of PPARG

BALVEQ

VAHKEV

Fragment replacement using the CSD

- Select atoms and bonds between which Bioisostere is sought
- Select a level of alignment quality
- Search

Potent Factor Xa Ligand (from 1w26)

EKOLUL

Crystal

Goldscore 89.9

Goldscore 84.6

Validation of fitted fragments using the CSD

Designing in the right linker conformation

Brameld. K.A., Kuhn, B., Reuter, D.C. and Stahl, M. J. Chem. Inf. Mod, 48(1), 1-24 (2008)

Designing to the right target

cross-docking

correct wrong

ensemble docking

correct wrong

								protein							
ligand	1a4q	1b9t	1b9v	$1 \mathrm{f8b}$	1f8c	$1 \mathrm{f8d}$	1f8e	1 inf	1inv	1inw	1mwe	1nnc	2qwi	2qwj	2qwk
1a4q	0.30 (106.92)	2.20 (66.42)	1.11 (69.69)	11.82 (83.27)	1.07(91.99)	1.28 (83.86)	1.05(88.94)	1.88 (65.40)	1.47 (74.38)	1.37 (83.16)	1.08 (88.88)	0.98 (90.77)	0.52 (83.51)	0.41 (86.58)	0.47(96.74)
1b9t	0.91 (73.98)	0.81 (69.57)	0.93 (67.12)	1.32 (74.46)	1.43(70.09)	1.34 (71.34)	1.20 (68.76)	1.19 (60.51)	1.50(67.40)	1.01 (67.04)	1.18 (73.36)	1.13(69.36)	3.95 (61.63)	1.10 (59.16)	1.11 (63.16)
1b9v	1.24 (81.18)	0.84 (71.87)	0.93 (74.31)	1.37 (74.19)	1.28 (73.23)	1.33(72.40)	1.06 (68.63)	1.32(70.99)	1.18 (68.45)	0.99 (69.86)	0.99 (76.20)	1.36(74.23)	1.18 (66.22)	1.18 (67.91)	1.09 (74.24)
1f8b	0.55(75.13)	0.57(57.41)	0.71(58.67)	0.42 (69.12)	0.47(71.61)	0.52 (66.35)	0.50(68.51)	4.02 (52.51)	0.77 (57,95)	0.90 (60.01)	0.37(71.63)	0.40(69.21)	2.13(61.23)	0.46(63.81)	1.09(66.46)
1f8c	0.59 (84.36)	1.14(62.93)	0.53 (63.59)	0.34 (71.37)	0.42 (80.32)	0.45(69.30)	0.44(76.92)	1.21 (62.56)	1.10(63.67)	0.87(67.94)	0.38 (74.62)	0.37(76.55)	0.55(64.82)	0.54 (73.86)	1.08(74.95)
1f8d	1.20 (75.46)	4.13 (63.01)	0.65(63.86)	1.66(72.40)	0.42(74.17)	0.33 (70.56)	0.51(71.49)	4.18 (61.69)	0.78(61.65)	0.82(62.65)	0.47 (75.00)	0.54(72.63)	1.15(63.17)	0.54(67.77)	1.18(69.78)
1f8e	1.17(84.95)	1.40 (66.56)	0.59(66.19)	0.51(74.83)	0.40 (82.94)	0.31(72.75)	0.48 (80.40)	1.53(62.74)	0.85(67.27)	0.99 (70.55)	0.50 (77.60)	-0.45 (79.54)	1.45(66.15)	-0.56(75.92)	1.14(78.96)
linf	0.67 (57.45)	3.59 (51:69)	6.03 (49.64)	0.54(56.39)	0.59(55.04)	0.54(55.53)	0.57(53.26)	3.65 (49.75)	0.74(51.12)	6.26(47.32)	0.58 (58.88)	3.22(47,43)	0.98(45.81)	4.47 (48.31)	0.60 (51.80)
linv	0.59(77.25)	0.67 (59.65)	0.69 (62.75)	0.73(74.62)	0.67(76.32)	0.69(73.76)	0.73(75.95)	3.88 (63.81)	1.16 (66.43)	0.65(66.14)	0.69 (76.65)	0.82(74.12)	0.92(70.39)	0.80(70.98)	0.81(72.36)
linw	2.19 (82.59)	2.16(62.15)	0.77 (64.72)	0.86 (73.99)	0.83(78.13)	0.93 (74.62)	0.95 (79.08)	3.97 (05.97)	0.92(66.61)	0.77 (70.66)	0.89(75.76)	1.10(76.26)	1.18(68.61)	0.99(72.91)	1.13 (72.91)
1mwe	0.62 (82.67)	0.69(64.17)	0.72(69.40)	0.41(75.17)	0.42 (76.35)	0.54(76.13)	0.51 (75.71)	1.13 (58.37)	0.81(62.86)	0.69(64.70)	0.41 (79.73)	0.50(75.33)	0.63 (66.59)	0.51(70.47)	0.92(69.27)
1nnc	0.47 (88.18)	0.56(6432)	0.45 (68.42)	0.31(75.66)	0.32(83.90)	0.34(77.83)	0.35(82.55)	2.70(66.71)	0.46(64.15)	0.51(64.03)	0.26(78.66)	0.77(82.31)	0.42(78.11)	0.41 (80.05)	1.02(81.03)
2qwi	1.17 (83.54)	1.66(58.56)	1.29 (59.95)	0.56 (72.97)	1.47 (8151)	0.66 (73.32)	0.47 (so.58)	2.02 (65.07)	1.57(62.39)	8.92 (65.07)	0.65(76.43)	0.65 (80.85)	1.05 (78.49)	1.03 (78.50)	1.04(82.78)
2qwj	0.40 (86.52)	0.83 (62.10)	0.86 (60.88)	0.67 (73.22)	0.68 (81.05)	0.64 (70.85)	0.78 (77.46)	1.17(04.23)	0.96(65.54)	1.21 (65.59)	0.75(75.16)	0.69 (74.06)	0.96 (67.21)	0.31 (74.91)	0.46 (81.61)
2qwk	0.37 (86.54)	0.90 (63.74)	0.76(62.88)	1.03 (72.94)	1.04 (80.18)	1.03(70.65)	1.05(77.23)	1.06 (66.25)	1.18(66.44)	1.18(67.39)	0.91(74.18)	1.06 (74.23)	0.78 (70.11)	0.39 (74.18)	0.50 (82.17)

Forget all this rubbish

35

Interaction Space

• It's what's on the outside that matters

Active

IRAK-4 inhibitors. Part II: A structure-based assessment of imidazo[1,2-a]pyridine binding

George M. Buckley, Thomas A. Ceska, Joanne L. Fraser, Lewis Gowers, Colin R. Groom, Alicia Perez Higuerueloa, Kerry Jenkinsa, Stephen R. Mack, Trevor Morgan, David M. Parry, William R. Pitt, Oliver Rausch, Marianna D. Richard and Verity Sabin Organic & Medicinal Chemistry Letters (2008), 18, 11, 1, 3291-3295

Inactive

Interaction Space

Search CSD or PDB for structures containing contact

Superimpose hits and display distribution

Interactions propensities can be normalised

Hotspots

😵 Hermes		
File Edit Selection Display View Calculate	Descriptors GOLD GoldMine Help	
Highlighting 🗹 Depth Cueing 📃 Stereo Show	H Hide H Show Unk Hide Unk Graphics Obje	cts Style: Wireframe Colour: by Element
Picking Mode: Select Atoms 💽 Clear Measurem	ents x- x+ y- y+ z- z+ x-90 x+9	0 y-90 y+90 z-90 z+90 $\leftarrow \rightarrow \downarrow \uparrow$ zoom-zoom+
Atom selections:		
Protein Explorer	8 ×	
Display Movable Descriptors GoldMine		
Customise Colours Group by	Sort Options Find next	
Identifier Gold_Goldscore_Fitness gs_c	s_consensus	
- Cox2_GS LI 72.7462	110.3991	
- Cox2_GS LI 68.9899	105.7592	
- Cox2_GS LI 71.5075	103.8698 -	
- Cox2_G5 LI 67.2076	103.4101	
- Cox2_GS LI 64.5557	100.6943	
– Cox2_GS LI 64.4480	100.1003	
- Cox2_GS LI 63.6451	99.6084	
- Cox2_G5 LI 63.6150	98.8538	
- Cox2_GS LI 65.5695	98.4884	
– Cox2_GS LI 63.5977	97.9513	
- Cox2_GS LI 66.8978	97.2699	
- Cox2_G5 LI 62.9372	96.9661	
- Cox2_G5 LI 63.5249	96.7602	To You
– Cox2_GS LI 58.9632	96.6197	
- Cox2_GS LI 61.6983	95.8969	
- Cox2_GS LI 64.9928	95.8574	
- Cox2_GS LI 59.6643	95.8323	
- Cox2_GS LI 61.1561	95.6510	
Cox2_GS LI 62.1401	95.6163	
- Cox2_GS LI 61.9999	95.4879	
- Cox2_GS LI 69.8015	94.8085	
- Cov2 GSILT 62 5456	94 7849 🞽	
<	× 1	

Final thoughts

- Be careful comparing ligand efficiency values
- But the most interesting regions of fragment space are computationally accessible
- Use available data
- The problems and opportunities aren't just technical and scientific
 - Significant IP implications
- Interactions matter

The End

Acknowledgements

VEHICLe http://www.ebi.ac.uk/chembldb/index.php/downloads

Will Pitt UCB and Cambridge Aurora Cruz Cabeza, John Leibeschuetz, Elna Pidcock - CCDC