

From Weak NMR-detected Fragment Hits to Clinical Candidates for BACE-1

Daniel F. Wyss, Ph.D. Merck Research Laboratories Cambridge/Kenilworth

Fragment-Based Lead Discovery 2010 Conference October 10-13, 2010, Philadelphia, PA

FBDD at legacy Schering-Plough, now MRL

10+ years experience in FBDD

General FBDD references:

•Curr Opin Drug Discov 5 (2002) 630

•Modern Magn Reson 2 (2006) 1401

•Frontiers Drug Des Discov 3 (2007) 171

•Methods in Enzymology (in press)

- In-house FBDD approach based on NMR-based screening (SbN) of customized fragment libraries and structure-assisted (x-ray & NMR) fragment hit-to-lead optimization chemistry
- Strategically applied to early & must win targets, and those struggling for leads
- Fragment hit progression in 73% of SbN projects (for 75% of those structural data on fragment/protein complex available), yielding valid lead series in ~30%
- BACE-1 clinical candidates are a direct result of FBDD
- Globalization of FBDD

BACE-1 (β-secretase) as a AD target

Amyloid hypothesis of AD supported by:

- Genetics (FAD mutations increase Aβ), neuropathology (amyloid plaques) and clinical data (Aβ vaccine)
- ► BACE-1: therapeutic target for the treatment of Alzheimer's disease
 - Inhibition of BACE-1 should reduce A β production, have disease modifying effect on AD
- Historically highly challenging in obtaining CNS active BACE-1 inhibitors

BACE-1 characteristics

- Membrane-anchored aspartyl protease
- Expressed in endosomes within neurons
- Optimum pH ~5
- Extended substrate binding cleft – partially covered by flap

Tang et al., Science 290 (2000) 150 Ghosh et al., JACS 122 (2000) 3522

BACE-1 inhibitors – Design challenges

- CNS target
 - Brain penetration required
 - Intracellular localization FU important
- Extended substrate binding cleft
 - Relatively open, hydrophilic active site
- Traditional aspartyl protease inhibitor scaffold
 - Poor pharmacokinetics, poor brain penetration, Pgp substrate
 - Did not reduce rat brain or CSF Aβ upon oral dosing
- Molecular properties of inhibitor must enable effective concentrations to reach BACE-1 active site
 - New chemotypes required
- High Throughput Screening methods
 - No suitable leads

SbN / FBDD

Novel chemotypes yield clinical candidates

BACE1 K_i = 0.8 nM cell A β_{40} IC₅₀ = 9 nM

Large scale production of BACE-1 for FBDD

6

Fragment-based NMR screening

HSQC-based SbN

- Active site hits by CSP
- Initially: active site map
- Later: full assignments
- >10k fragments in clusters of 12
- Hit follow-up by NMR / x-ray
- 9 distinct active site chemotypes identified (K_D[NMR] ~30µM-3mM)

Isothiourea SbN fragment hit optimization

Search for heterocyclic isothiourea isosteres

2-Aminopyridine series

Directed screen of thirty-one 2-amino-pyridines

Structure-based design of iminohydantoins

2nd binding mode of iminohydantoin core

Iminohydantoin fragment-hit-to-lead optimization

Fragment hit-to-lead chemistry complicated by different binding modes

- Orientation of iminohydantoin active site core influenced by substituents
- Structural information helpful to explain SAR
- "Mode B" preferred as H2L optimization evolved

Iminohydantoin design validation

Development strategy

Iminohydantoin hit-to-lead

Iminohydantoin fragment-hit-to-lead optimization

Iminohydantoins – S1-S3 Occupancy

BACE1 K_i: 3.7 μ M cell A β 40 IC₅₀: 13 μ M CatD/BACE1: >20 LE: 0.37

BACE1 K_i: 109 nM cell A β 40 IC₅₀: 633 nM CatD/BACE1: 120 LE: 0.37

HN Me N HN HN O +/-	
R	Κ _i μ Μ
Ph	3.25
3-MePh	0.55
3-CNPh	0.37
3-CIPh	0.30
3-MeOPh	0.19
4-MeOPh	3.80
3-Py	0.53
4-Py	3.80

Iminohydantoins vs iminopyrimidinones: Design

19

Iminohydantoins vs iminopyrimidinones: SAR

R	Κ _i μ Μ	cell Aβ40 IC ₅₀ μΜ
3-Py	0.11	0.63
3-MeOPh	0.079	2.25

20

Iminopyrimidinones: X-ray and binding conformation

Iminopyrimidinone SAR

P1 thienyl - improved BACE1 affinity

3,5-Substituted thienyl analogues – selected SAR

BACE1 co-crystal structures

K_i: 7 nM (cyan) Compound 12

Compound 12 - profile

BACE1 K _i nM	7		
cell IC ₅₀ nM Aβ40	13		
Α β 42	9		
sAPPβ	44		
BACE2/B1	0.1		
CatD/B1	188		
CatE/B1	708		
Renin/B1	260		
Pepsin/B1	>10,000		

Hepatocyte Cl_{int} (μL/min/M cell): hmn 2.2; rat 3.6; dog 7.5; mky 19.9 Caco2 perm: 144 nm/s; ratio: 3.5 Plasma protein binding: 89% (hmn), 95% (rat)

CYP IC₅₀: 3A4, 2D6, 2C9 > 20 μM hERG VC: 34%I @ 1 μM

rat PK parameters

dose mg/kg	po AUC _{0-24h} μM.h	%F	ρο C_{max} μΜ	Cl ml/min/kg	Vd _{ss} L/kg	iv T _{1/2} h	b/p
10 po / 3 iv	20	90	3.9	24	3.5	1.6	0.3

Compound 12 reduces CSF and Cortex Aβ40 in rats

Summary

- Fragment-based NMR screening / X-ray crystallography enabled
 - discovery of a novel amidine binding motif to the active-site Asp's of BACE-1
 - design and validation of novel iminoheterocycle Asp protease inhibitor core
- Lead optimization guided by structure-based design afforded unique, low MW, high affinity, selective iminopyrimidinone BACE-1 inhibitors
 - hydrophobic interactions optimized in S1, S3, S3^{sp}
 - conformational restriction / few rotatable bonds contribute to high LE
- Iminoheterocyclic BACE-1 inhibitors possess desirable properties as potential therapeutic agents to test amyloid hypothesis
 - high oral bioavailability
 - CNS penetration
 - robust reduction of CSF and brain $A\beta$ in rats and primates

Acknowledgments

Medicinal Chemistry John Caldwell

Jared Cumming Michael Czarniecki James Durkin William Greenlee Ulrich Iserloh Guoging Li Robert Mazzola **Brian McKittrick** Jeffrey Misiaszek **Terry Nechuta Jianping Pan Flizabeth Smith** Andrew Stamford George Sun Lingvan Wang Yusheng Wu Zhaoning Zhu

Synthetic Chemistry

Jianshe Kong Tao Meng Jesse Wong Mark Liang Yan Jin Teresa Andreani

Structural Chemistry

Brian Beyer Hung Le Vincent Madison Tony Mannarino Joseph Myers Jr. Peter Orth Paul Reichert Mary Senior **Corey Strickland** Shane Taremi **Johannes Voigt** Wenyan Wang **Yu-Sen Wang Daniel Wyss**

Pharmacopeia

Suresh Babu Paul Gaspari Helen Gu **Tao Guo** Rachael Hunter Thuy Le Jianming Ma Michelle Morris Gang Qian Kurt Saionz Dawitte Tadesse

In vitro and In vivo Biology:

Carina Bleickardt Joseph Chen Xia Chen Marv Cohen-Williams **Robert Del Vecchio** Michael Grzelak **Donald Guthrie** Mario Guzzi Robert Hodgson John Hunter Lynn Hyde Tatiana Kazdoba Matthew Kennedy Reshma Kuvelkar Prescott Leach Sherry Lu Nansie McHugh Cynthia Morgan **Deborah Mullins** Eric Parker Lixin Song Giuseppe Terracina Geoff Varty Lili Zhang Qi Zhang

Drug Metabolism&Pharmacokinetics

Kathleen Amatulli Ryan Anstatt Lisa Broske Shiving Chen Inhou Chu Kathy Cox Leonard Favreau. Yi Han James Jean Walter Korfmacher Jing Lan Cheng Li TongTong Liu **Richard Morrison** Cymbelene Nardo Dan Prelusky **Tony Soares** Ann Thomas Hui Wan Qiao Zhou

Pharmaceutical Sciences

Irina Kazakevich Prudence Bradley