## **EMERALD** BIOSTRUCTURES

#### Predicting Success For Crystallographic Fragment Screens

**Doug R. Davies** Sr. Director of Structural Biology

> FBLD 2010 October 12, 2010

# Outline

- (Re)Introduction to Emerald BioStructures
- Fragments of Life<sup>™</sup> library—rationale and design
- Seattle Structural Genomics Center for Infectious Disease (SSGCID)
- Fragment Screening Review: Predicting Successful Fragment Targets From Initial Crystal Structures



#### Emerald BioStructures: A Collaborative Research Organization With Gene-Structure-Lead-IND Capabilities

- Formerly deCODE biostructures, now independent, privately-owned
- Located on Bainbridge Island, near Seattle, WA
- 55 Employees, 10 Ph.D. crystallographers
- Over 13 years experience in structural biology collaboration
- High throughput pipeline: >1500 crystals/month, >400 structures/year



#### **Fragments of Life: Natural Products & Derivatives**



D.R. Davies, et al. (2009). *J Med Chem*. 52(15):4694-715. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography.

#### **Fragments of Life: Protein Structure Mimetics**

- Inspiration from recent papers describing small molecule mimics of protein structure.
  - Biros, *et al.* (2007) Heterocyclic alpha-helix mimetics for targeting protein-protein interactions. *Bioorg. Med. Chem. Lett.* **17**, 4641.
  - Robinson (2008) Beta-hairpin peptidomimetics: design, structures and biological activities. *Acc. Chem. Res.* **41**, 1278.
- Biaryl compounds screened *in silico* for energy-minimized conformations that match  $\alpha$ -,  $\beta$ -, and  $\gamma$ -turns.



D.R. Davies, et al. (2009). *J Med Chem*. 52(15):4694-715. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography.





#### Fragments of Life Library Physical and Chemical Properties (1444 Compounds)



6

BIOSTRUCTURES

### Seattle Structural Genomics Center for Infectious Disease (SSGCID)

- **Role**: Emerald is contractor providing all X-ray services, some construct design, expression and purification
- **Targets**: NIAID Category A-C agents; (re)emerging infectious diseases
- **Goal:** Produce 500+ structures of novel infectious disease targets
- 250<sup>th</sup> Structure milestone marked September, 2010
- Emerald is the only CRO that collaborates on such a large scale.



## **Productivity of SSGCID**

- 253 structures, 183 unique targets solved to date
- On pace to exceed 500 structures by 2012



# **New Concepts in Structural Genomics**

#### PSI I-II Concepts (2000-2005):

1. Establish HT structure determination centers, technology development -Reduce time and expense per target

2. Coverage of "fold space"

-Enable prediction of 3D structure from primary sequence

#### **Emerging Concepts in SSGCID:**

- 1. Engaging the Scientific Community
- 2. Ensembles of Structures/ Pilot Screening Projects



## **SSGCID: Engaging The Scientific Community**

#### **Community Requests Submitted Via Web:**

- http://apps.sbri.org/SSGCIDCommTargReq/
- 489 requests have entered SSGCID pipeline
- 22 structures from 13 targets solved to date



Edwards TE, Phan I, Abendroth J, *et al.* 2010 1.35 Å Structure of a *Burkholderia pseudomallei* Trimeric Autotransporter Adhesin Head. PLoS ONE 5(9): e12803.

Copyright 2010



#### SSGCID: Ensembles of Ligand-Bound Structures → Pilot Screening



Superposition of four ligand (fragment) bound structures of *Burkholderia pseudomallei* IspF

#### Why Ensembles?

- Economical use of crystallized protein
- Reveal structural dynamics
- Identify multiple binding sites
- Blueprint for SBDD



## **Fragment Screening of SSGCID Targets**

- Fragments of Life library used for screening of some SSGCID Targets
- Crystallography used as primary screen
  - Emerald has high throughput in-house X-ray system
    - Two Rigaku X-ray generators
    - Four detectors, two ACTOR robots
    - 24 hour unattended data collection possible
    - Semi-automated scripts for data processing, solution
    - Primary screen on amenable crystals in < 1 week
- Targets chosen for desirable crystal properties (diffraction, symmetry)
- Some were "productive": yielding hits that could inspire lead development
- Some were unexpectedly "non-productive": no hits, or crystal artifacts



## Why Are Some Crystals Non-Productive?

- Can we predict success of crystallographic screens?
- Crystal system is layer of complexity on top of "ligandability" problem
- Some intractable crystals can be identified by experienced researcher
  - Active site blocked by crystal contacts
  - Active site blocked by binding of component of crystallization solution
- Can we identify other factors that correlate with "productivity"?
  - Survey conditions of 18 fragment screening campaigns
    - 12 "productive" targets
      - 5 SSGCID
      - 1 internal drug discovery target
      - 4 literature examples
      - 2 examples from proprietary work
    - 6 "non-productive" targets
      - 4 SSGCID
      - 2 examples from proprietary work



## **Non-Productive Fragment Targets**



10/12/2010



## **Productive Fragment Targets**



# **Productive Fragment Targets (Other Published Case Studies)**





## Factors With No Significant Correlation To Tractability of Crystal for Fragment Screening:

- Enzyme class
- Size
- Oligomeric State
- Precipitant
- pH
- Solvent Content
- Solvent Channel Size

|          | Productive | Non-Productive |  |
|----------|------------|----------------|--|
| pH Range | 4.2 - 8.5  | 5.4 - 8.5      |  |
| Mean pH  | 7.03       | 7.08           |  |



## **Solvent Channel Analysis**

Modified program AREAIMOL (CCP4) to measure largest solvent channel

- Symmetry operators applied to create model of crystal lattice
- Probe sphere size increased until protein monomer at "center" inaccessible
- Biggest sphere that contacts central monomer ~ solvent channel diameter

|                          | Productive | Non-Productive |
|--------------------------|------------|----------------|
| Solvent Content Range    | 39% - 62%  | 39% - 50%      |
| Mean Solvent Content     | 53.3%      | 44.2%          |
| Solvent Channel Diameter | 18 - 34    | 15 - 31        |
| Mean Channel Diameter    | 25.8       | 25.0           |



## **Solvent Channel Analysis**

**Productive Target** 

**Non-Productive Target** 



3F0D: solvent content: 45 %, diameter 34 Å

3KHW: solvent content: 43 %, diameter 15 Å

10/12/2010

Copyright 2010

Slide 19



# **Pocket-Finding Software**

- Pocket Finder (P-Pocket) <a href="http://www.modelling.leeds.ac.uk/pocketfinder/">http://www.modelling.leeds.ac.uk/pocketfinder/</a>
  - spatial/directional algorithm based on LIGSITE which effectively pushes a neutral sphere through a protein structure while taking note of its surroundings.
  - Hendlich, M., et al. (1997). J Mol Graph Model. 15, 359-63, 389.
- Q-Sitefinder (Q-Pocket) <u>http://www.modelling.leeds.ac.uk/qsitefinder/</u>
  - Method positions and clusters methyl (CH<sub>3</sub>) probes to the protein surface followed by calculation and ranking of likely pockets based on predicted binding energies for such hydrophobic clusters.
  - Laurie AT, Jackson RM (2005). *Bioinformatics*, **21**: 1908-1916
  - F-Pocket <u>http://bioserv.rpbs.univ-paris-diderot.fr/fpocket/</u>
    - Detects protein cavities by scanning, categorizing, clustering and ranking sets of alpha spheres which can be drawn within a 3D protein structure
    - Le Guilloux, V., et al. (2009). *Bioinformatics*. **10,** 168



# **Pocket Prediction for IspF**



#### **Consensus Prediction Gives Best Agreement With Experimental Results**



Numbers of predicted pockets (numbers of predicted pockets shown experimentally to bind ligands)

**Consensus (C-Pocket):** Determined by visual inspection of overlap of pockets-consensus determined when >50% overlap between P,Q and F.

Slide 22



#### **Pocket Factor Analysis and "Pocket Factor"**

| PRODUCTIVE |                |                     |                     |                   |                        |
|------------|----------------|---------------------|---------------------|-------------------|------------------------|
| PDB        | known<br>sites | total F-<br>Pockets | total C-<br>Pockets | Pocket<br>Factor* | C-Pockets<br>w/ligands |
| 3lr0       | 1 (2)          | 10                  | 5                   | 26                | 1                      |
| 1wbo       | 1              | 15                  | 7                   | 20                | 1                      |
| PRP4       | N.A.           | 11                  | 4                   | 14                | N.A.                   |
| 3f0d       | 8              | 14                  | 6                   | 14                | 4                      |
| 1h19       | 5              | 19                  | 8                   | 13                | 4                      |
| PRP1       | N.A.           | 13                  | 5                   | 13                | N.A.                   |
| 1rrw       | 1 (4)          | 28                  | 6                   | 13                | 4                      |
| 3ezn       | 1 (2)          | 13                  | 5                   | 11                | 2                      |
| 3eom       | 3 (12)         | 44                  | 8                   | 11                | 7                      |
| 1y2b       | 2 (4)          | 19                  | 7                   | 11                | 2                      |
| 2wi1       | 1              | 4                   | 2                   | 10                | 1                      |
| 3lrf       | 1              | 22                  | 5                   | 6.6               | 0                      |
|            | SUM:           | 212                 | 68                  |                   | 26                     |
|            | MIN:           | 4                   | 2                   | 7                 |                        |
|            | MAX:           | 44                  | 8                   | 26                |                        |
|            | MEAN:          | 18                  | 6                   | 14                |                        |
|            | STDEV:         | 10                  | 2                   | 5                 |                        |

| NON-PRODUCTIVE |        |          |          |         |            |  |  |
|----------------|--------|----------|----------|---------|------------|--|--|
| PDB            | known  | total F- | total C- | pocket  | C-Pockets  |  |  |
|                | sites  | Pockets  | Pockets  | factor* | w/ ligands |  |  |
| 3khw           | 1      | 10       | 3        | 16      | 0          |  |  |
| 3eiz           | 3 (18) | 18       | 8        | 7.7     | 1          |  |  |
| PRP3           | N.A.   | 12       | 3        | 7.4     | N.A.       |  |  |
| 3gvg           | 1 (2)  | 12       | 3        | 6.3     | 2          |  |  |
| PRP2           | N.A.   | 4        | 1        | 3.9     | N.A.       |  |  |
| 3gwa           | 0      | 22       | 2        | 3.1     | 0          |  |  |
|                | SUM    | 78       | 20       |         | 3          |  |  |
|                | MIN    | 4        | 1        | 3       |            |  |  |
|                | MAX    | 22       | 8        | 16      |            |  |  |
|                | MEAN   | 13       | 3        | 7       |            |  |  |
|                | STDEV  | 6        | 2        | 5       |            |  |  |

 Pocket factor: total number of C-pockets per volume of protein (in 100 nm<sup>3</sup>) as calculated by Q-Pocket.

• Average pocket factor for Productive proteins was twice that of Non-productive, at a 98% confidence level (p = 0.024)



# Conclusions

- Fragment screening has a place in structural genomics efforts
- Tractability of crystal system to fragment screening is impossible to predict with certainty
- "Pocket Factor" shows statistically significant correlation
  - *Not* absolutely predictive
  - may be a useful metric for prioritizing multiple targets for fragment screening



# Acknowledgements

**Crystallography /FOL** Team (Emerald)











- **Darren Bagley**  $\leftarrow$ 
  - **Robert Hartley**
- Tom Edwards  $\leftarrow$

4

- Jan Abendroth

- SSGCID
  - Dr. Peter Myler (SBRI)
  - Dr. Gabriele Verani (UW)
  - Dr. Gary Buchko (PNNL)
  - Dr. Wes Van Voorhis (UW)
  - Robin Stacy (SBRI) \_
  - **Bart Staker (Emerald)**
  - Alberto Napuli (UW)
  - **SSGCID** Funding from NIAID HHSN272200700057C





25





 $\rightarrow$ 

 $\rightarrow$ 

- Jeff Christensen
- **Jess Leonard**
- **Michele Dieterich**  $\leftarrow$ 
  - Bart Staker, Sr. Dir. →
- Alex Burgin, COO  $\leftarrow$ 
  - Lance Stewart, CEO  $\rightarrow$



10/12/2010

