Enumerating, Mapping and Scoring Chemical Space

 10^{60} (?)

Jean-Louis Reymond FBLD 2010, Philadelphia 11 October 2010

GDB, CST
 MQN
 Scoring

and the second second

J.-L. Reymond et al.. Chemical space as a source for new drugs. Med. Chem. Commun. 2010, 1, 30-38

GDB Assembly

I. Select hydrocarbon graphs (**ring strain**, topology)

- II. C-C to C=C, C#C following valency rules, no allenes, no DB in bridgehead or 3- and 4-rings, no TB in <9-rings, **no DB torsion**
- III. C to N or O following valency rules
- IV. Filter bad functional groups, select tautomers
- V. Post-processing: Halogens, S, etc.

T. Fink et al. *Angew. Chem. Int. Ed.* **2005**, *44*, 1504-1508, *J. Chem. Inf. Model.* **2007**, *47*, 342-353 (GDB-11) L. C. Blum, J.-L. Reymond, *J. Am. Chem. Soc.* **2009**, *131*, 8732-3 (GDB-13) Lars Ruddigkeit, Ruud van Deursen (GDB-17)

DMU (valency rules only)

3

GDB-11 (CNOF)

Nodes	Graphs ^a	Generated ^b	Accepted ^c	Unique Tautomers (GDB) ^d	All Tautomers	Stereoisomers ^e
1	1	4	4	4	4	4
2	1	10	9	9	9	9
3	2	52	20	20	21	20
4	4	332	80	80	88	87
5	8	2'294	357	352	397	469
6	20	18'066	1'906	1'850	2'135	2'911
7	57	154'542	10'953	10'568	12'438	19'904
8	194	1'445'073	69'563	66'706	79'899	153'601
9	705	14'213'741	464'402	444'313	540'002	1'258'963
10	2'822	146'004'340	3'259'036	3'114'041	3'827'907	10'898'065
11	11'912	1'558'491'448	23'875'101	22'796'628	28'240'425	98'645'474
Total	15'726	1'720'329'902	27'681'431	26'434'571	32'703'325	110'979'507

Table 2. Overview of the structure generation process.

99.8 % are unknown

	Number of	4-membere	d rings	
Number of 3-membered rings	0	1	2	Total
0	124 [3]	189 [60]	103 [67]	416 [130]
1	225 [50]	238 [177]	20 [19]	483 [246]
2	201 [88]	55 [48]	-	256 [136]
3	53 [26]	-	-	53 [26]
Total	603 [167]	482 [285]	123 [86]	1'208 [538]

GDB-13 (CNOSCI, max. heteroatom ratio)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CI/S ^d	GDB ^c	graphs ^b	nodes ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	1	1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	3	1	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	12	2	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	43	4	4	
6 20 934 19 7 57 5726 315	3	3	155	8	5	
7 57 5726 315	9	19	934	20	6	
	5	315	5 726	57	7	
8 194 37 151 2 438	8	2 4 3 8	37 151	194	8	
9 706 255 542 17 056	6	17 056	255 542	706	9	
10 2 831 1 784 626 130 465	5	130 465	1 784 626	2 831	10	
11 12 011 12 961 686 938 704	4	938 704	12 961 686	12 011	11	
12 53 789 99 821 343 7 240 108	8	7 240 108	99 821 343	53 789	12	
13 250 268 795 244 451 59 027 533	3	59 027 533	795 244 451	250.268	13	
Total 319 892 910 111 673 67 356 641	1	67 356 641	910 111 673	319 892	Total	

L. C. Blum, J.-L. Reymond, J. Am. Chem. Soc. 2009, 131, 8732-3

Figure S4 A and B. Bar-plot of the percentage of compounds from GDB-13 (blue bars), 216 188 commercial compounds from the ACX directory (purple bars) and 1193 oral drugs listed in ref. 10b (yellow bars) that pass the Lipinski or Vieth criteria as a function of the number of violations allowed. The Lipinski's rule of 5 states that 90% of drug candidates (entering phase II) have no more than one violation in the four criteria.

Drugs and isomers in GDB-13

			T	SF
Name	Formula	Same Formula	AVG	> 0.7
Aspirin	$C_9H_8O_4$	804 153	0.23	178
Benzocaine	$C_9H_{11}NO_2$	1 846 579	0.24	74
L-Tyrosine	$C_9H_{11}NO_3$	9 276 529	0.46	24 952
Levetiracetam	$C_8H_{14}N_2O_2$	2 154 955	0.28	35
Memantine	$C_{12}H_{21}N$	2 872 586	0.31	10 912
Menadione	$C_{11}H_8O_2$	233 715	0.44	112 186
Metaraminol	$C_9H_{13}NO_2$	2 920 516	0.26	30
Mexiletine	$C_{11}H_{17}NO$	18 371 393	0.25	119
Propofol	$C_{12}H_{18}O$	5 263 227	0.25	240
Rasagiline	$C_{12}H_{13}N$	1 323 525	0.13	411
Rimantadine	$C_{12}H_{21}N$	2 872 586	0.26	173

Phenmetrazine isomers

GDB-17 (CNOSHal + gradual filters)

HAC	SMILES	Database	Total	Filters
1	3			FG+strain+torsion
2	6			
3	19			
4	23			
5	268			
6	1'320			
7	7'488			
8	46'608			
9	309'243			
10	2'175'788			
11	16'189'774	GDB11	18'730'540	
12	96'915'932		115'646'472	no atom in 2 small rings
13	794'711'725	GDB13	910'358'197	
14	4'141'604'653		5'051'962'850	no bridgehead in three rings
15	22'721'659'277		27'773'622'127	
16	48'849'650'795		76'623'272'922	one small ring
17	55'516'921'640	GDB17	132'140'194'562	no small rings, no non-arom. C=C

Processing times

Chemical Space Travel

13

Nearest neighbour mutations^[a]

Atom type exchange ^[b,c]	Replaces any atom by another atom type
Atom inversion ^[c]	Inverts two neighbouring atoms
Atom removal ^[c]	Primary: $A \rightarrow X \rightarrow A$
	Secondary: $A \rightarrow X - A \rightarrow A \rightarrow A$
	Tertiary: $XA_3 \rightarrow A - A - A$
	(max. 6 combinations if 3 different A's)
	$A_2CH-CHA_2$ or $A_2C=CA_2\rightarrow CA_4$
	Quaternary: $XA_4 \rightarrow A - A - A - A$ or $A(A)_3$
	(max. 16 combinations if 4 different A's)
Atom addition ^[b,c]	On terminal atoms: $A \rightarrow A - X$
	In any bond: $A \rightarrow A \rightarrow X \rightarrow A$
	In chains: $A - A \rightarrow XA_3$; $A - A - A \rightarrow XA_4$
	Quaternary centres:
	$CA_4 \rightarrow A_2CH - CHA_2$ and $A_2C = CA_2$
	(max. 6 combinations if 4 different A's)
Bond saturation ^[c]	Breaks a cyclic σ - or any π -bond
Bond unsaturation	Makes a cyclic σ - or π -bond
Bond rearrangement ^[c]	Breaks a σ - or π -bond and inserts it anywhere else in the molecule
Non-nearest neighbour mutations	

Aromatic ring addition^[c,d]

 $\text{A-NH}_2 {\rightarrow}$

 $H_2O\!\rightarrow$

 $\text{A-CH}_3 {\rightarrow}$

Cross-Trajectories

ö From:	Cubane	Aspirine	XX	Adenosine	Sucrose	Penicillin G	Strychnine	Colchicine	Tetracycline	Vitamin K
Cubane	-	10	18	23 (1)	19	18 (1)	18 (1)	22 (1)	24 (1)	26 (1)
Aspirine	10*	-	14	21	15	16	24	22	22	33
VX	13	17 (1)	-	31 (1)	18	15 (1)	21 (1)	20 (2)	24* (1)	25* (1)
Adenosine	17*	27	18*	-	14	15	24	23	27*	29
Sucrose	18*	22 (1)	22*	29 (1)	-	25	26 (1)	31 (1)	25 (1)	25 (1)
Penicillin G	19*	13*	14*	23	19*	-	20	19*	21*	29
Strychnine	21*	17*	20	26	22	16*	-	30*	17*	22*
Colchicine	27	22*	21	26	18	22	23	-	22*	21*
Tetracycline	28*	20	25*	49	19	19*	16	28	-	17
Vitamin K	30*	24*	30*	34*	28*	27*	19*	30*	22*	-

$\mathsf{AMPA} \leftrightarrow \mathsf{CNQX}$

Mapping Chemical Space

GDB, CST **2. The MON system** Scoring

K. T. Nguyen, L. C. Blum, R. van Deursen, J.-L. Reymond *ChemMedChem* **2009**, *4*, 1803-5 R. van Deursen, L. C. Blum, J.-L. Reymond, *J. Chem. Inf. Model.* **2010**, in press

The Periodic System of the Elements

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Lanthan	Cer	Praseodym	Neodym	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138,91 u	140,12 u	140,91 u	144,24 u	146,9 u	150,35 u	151,96 u	157,25 u	158,93 u	162,50 u	164,93 u	167,26 u	168,93 u	173,04 u	174,97 u
2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/
18/9/2	19/9/2	21/8/2	22/8/2	23/8/2	24/8/2	25/8/2	25/9/2	27/8/2	28/8/2	29/8/2	30/8/2	31/8/2	32/8/2	32/9/2
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
Actinium	Thorium	Protaktin.	Uran	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelev.	Nobelium	Lawrencium
(227 u)	232,04 u	231,04 u	238,03 u	237,05 u	(244,1 u)	(243,1 u)	(247,1 u)	(247,1 u)	(251,1 u)	(254,1 u)	(257,1 u)	(258 u)	(259 u)	(260 u)
2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/
18/9/2	18/10/2	20/9/2	21/9/2	22/9/2	24/8/2	25/8/2	25/9/2	27/8/2	28/8/2	29/8/2	30/8/2	31/8/2	32/8/2	32/9/2

Molecular Quantum Numbers

- > integer value descriptors of atoms, bonds, polarity, topology
- > immediate meaning, the values can be determined "by hand"
- > 42 MQNs define a 42-dimensional "Chemical Space"
- > PCA to vizualize most of the diversity in 2D or 3D (Map)

Category 1: Atoms	Category 2: Bonds	Category 3: Polarity	Category 4: Topology
1. c (carbon)	13. asb (acyclic single bonds)	20. hbam (H-bond acceptor sites)	26. asv (acyclic single valent nodes)
2. f (fluorine)	14. adb (acyclic double bonds)	21. hba (H-bond acceptor atoms)	27. adv (acyclic divalent nodes)
3. cl (chlorine)	15. atb (acyclic triple bonds)	22. hbdm (H-bond donor sites)	28. atv (acyclic trivalent nodes)
4. br (bromine)	16. csb (cyclic single bonds)	23. hbd (H-bond donor atoms)	29. aqv (acyclic tetravalent nodes)
5. i (iodine)	17. cdb (cyclic double bonds)	24. negc (negative charges)	30. cdv (cyclic divalent nodes)
6. s (sulfur)	18. ctb (cyclic triple bonds)	25. posc (positive charges)	31. ctv (cyclic trivalent nodes)
7. p (phosphorous)	19. rbc (rotatable bonds)		32. cqv (cyclic tetravalent nodes)
8. an (acyclic nitrogen)			33. r3 (3-membered rings)
9. cn (cyclic nitrogen)			34. r4 (4-membered rings)
10. ao (acyclic oxygen)			35. r5 (5-membered rings)
11. co (cyclic oxygen)			36. r6 (6-membered rings)
12. thac (all non-H)			37. r7 (7-membered rings)
			38. r8 (8-membered rings)
			39. r9 (9-membered rings)
			40. rg10 (≥10-membered rings)
			41. afrc (nodes in \geq 2 rings)
			42. bfrc (edges in \geq 2 rings)

	ZINC	GDB-11
no. of cpds	8 436 272	26 434 567
no. of MQN-bins	3 654 836	2 859 938
no. of single occupied MQN-bins	1 832 566	660 851
no. of cpds in most occupied MQN-bin	300	1 982
no. of shared MQN-bins	13 769	13 769
no. of cpds in shared MQN-bins	30 779	254 604

GDB-11

B. N_{Rings}

E. TPSA

F. clogP

Lorenz Blum

Analysis of PubChem (19.2 million SMILES)

PC-Loadings for MQNs ■ PC1 (65%) ■ PC2 (18%) ■ PC3 (7%)

0.65

0.45

Frequency map

PC' = Sqrt(1+PC) - 1

(0,0)

PC2

H-Bond acceptor ratio

PC3

PC2

Scoring Chemical Space

GDB, CST MQN Scoring

R. van Deursen, L. C. Blum, J.-L. Reymond, *J. Chem. Inf. Model.* 2010, in press Lorenz Blum (GDB subsets)

E. Luethi et al., J. Med. Chem. 2010, 53, 7236, and N. Garcia-Delgado et al., ACS Med. Chem. Lett. 2010, online

Enriching the DUD actives from Pubchem

	nr. of	EF _{0.1}				EF ₁			
	actives ^{b)}	CBD _{MQN}	T _{MQN}	CBD _{SF}	T _{SF}	CBD _{MQN}	T _{MQN}	CBD _{SF}	T _{SF}
Nuclear Hormo	one Recepto	°S							
AR	79	379.5	379.5	265.6	265.6	46.8	48.1	43.0	41.8
ERagonist	67	507.1	507.1	432.5	387.8	56.7	50.7	58.2	47.8
ERantagonist	39	358.7	358.7	333.1	333.1	51.3	51.3	35.9	41.0
GR	78	166.6	140.9	538.1	563.7	60.2	55.1	53.8	65.4
MR	15	666.2	666.2	466.3	466.3	86.7	86.7	80.0	86.7
PPARg	85	728.9	623.1	870.0	905.3	87.0	84.7	89.4	91.7
PR	27	592.2	555.2	592.2	629.2	59.2	59.2	59.2	70.4
RXRa	20	849.4	599.6	849.4	849.4	95.0	85.0	85.0	100.0
Kinases									
CDK2	72	111.0	83.3	138.8	138.8	20.8	18.1	15.3	16.7
EGFR	475	90.5	67.3	126.2	132.5	25.5	20.8	20.2	27.2
FGFr1	120	191.5	183.2	624.6	724.5	29.2	22.5	74.2	85.0
HSP90	37	378.1	378.1	648.2	702.2	54.0	37.8	70.3	70.3
P38 MAP	454	424.8	380.8	691.2	783.6	59.5	55.9	79.5	89.4
PDGFrb	170	64.7	52.9	82.3	82.3	20.0	18.2	18.2	20.0
SRC	159	188.5	182.3	590.8	659.9	27.7	22.0	71.1	74.2
ТК	22	545.1	499.7	726.8	726.8	81.8	81.8	95.4	86.3
VEGFr2	88	102.2	102.2	136.3	193.0	20.5	19.3	20.5	30.7

Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking. *J. Med. Chem.* **2006**, *49*, 6789-6801.

Lead Hop(p)ing

Lead Hop(p)ing

The PubChem-browser

- > Draw structure
- > retrieve MQN_{CBD} neighbours in database

Pubchem Browser	
Structure $ \begin{array}{c} & & & \\ & &$	Analog search options Search method max.count: 1000 max.dist: 2 Done after 2.715 sec Adjusting molecule to pH 7.4 OK Calculating MQNs for Molecule OK Looking for matches OK Extracting structures OK Building viewer OK Done after 13.401 sec
▶ • • • • • • • • • •	Clear Log Search analogs of Structure

Subsets of GDB-13

- > A: full GDB-13
- B: A without esters, carbonates, sulfates, aldehydes, epoxides, aziridines
- > C: B without non-aromatic het-het bonds
- > D: C without non-aromatic C=C
- > E: D without small rings
- > F: fragment-like portion of E
- > MQN sets: 10,000 MQN neighbours of query molecule in any of the subsets A-F
- > Scoring:
 - structural similarity to query (Tanimoto of SF fingerprint)
 - shape similarity to query (ROCS)

MQN-sets yield high T_{SF} analogs

MQN-sets yield high ROCS scores

Identification of Selective Norbornane-Type Aspartate Analogue Inhibitors of the Glutamate Transporter 1 (GLT-1) from the Chemical Universe Generated Database (GDB)

Erika Luethi,[†] Kong T. Nguyen,[†] Marc Bürzle,[‡] Lorenz C. Blum,[†] Yoshiro Suzuki,[‡] Matthias Hediger,^{‡,§} and Jean-Louis Reymond^{*,†,§}

[†]Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland, [‡]Institute of Biochemistry and Molecular Medicine, University of Berne, Bühlstrasse 28, 3012 Berne, Switzerland, and [§]Swiss National Center of Competence in Research, NCCR-TransCure, University of Berne, Switzerland

Received July 28, 2010

Known GLT-1 Ligands

Glutamate uptake assay in Oocytes

_

IC₅₀ (GLT-1) IC₅₀ (EAAC1)

	[µM]	$[\mu M]$
<i>rac</i> -23a (vinyl)	130 ± 70	no inhibition
<i>rac</i> -25a (phenethyl)	1.4 ± 0.7	no inhibition
<i>rac</i> -25d (phenethyl)	19 ± 5	no inhibition
<i>rac</i> -28a (propyl)	25 ± 3	no inhibition
<i>rac</i> -28b (butyl)	14 ± 8	n. d.
<i>rac</i> -28c (<i>o</i> -HOPh)	21 ± 11	no inhibition
<i>rac</i> -28d (<i>p</i> -ClPh)	17 ± 11	no inhibition
7 (WAY-855) ²²	1.3	53
17 (L-TBOA) ⁴¹	3.8	7.0
TFB-TBOA ⁴³	0.017	0.3

Docking found consistent binding modes

Docking selected compact ligands

ACS Medicinal Chemistry Letters

Exploring α 7-Nicotinic Receptor Ligand Diversity by Scaffold Enumeration from the Chemical Universe Database GDB

Noemi Garcia-Delgado,[†] Sonia Bertrand,[†] Kong T. Nguyen,[†] Ruud van Deursen,[†] Daniel Bertrand,[†] and Jean-Louis Reymond^{*,†}

[†]Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland, and [†]Department of Neuroscience, Medical Faculty, 1, rue Michel Servet CH-1211 Geneva 4, Switzerland

Compound	IC_{50} or EC_{50}	activity type
1	$5.6 \pm 1.7 \ \mu M$	competitive antagonist to ACh
2	6.1 ± 1.5 μM	non competitive antagonist
3	$7.0 \pm 1.1 \ \mu M$	mixed antagonist
4	$7.2 \pm 1.2 \ \mu M$	mixed antagonist
6	$4.4 \mu M^{b)}$	partial agonist ^{b)}

-Cl LN-|| 0

1 IC₅₀ = 5.6 μM

5 (PNU-282,987)

3

4

6 (SSR180711) EC_{50} = 4.4 μ M

Salahuddin Syed Erika Lüthi Noemi Garcia-Delgado Justus Bürgi Lise Brethous

Tobias Fink Kong Nguyen Ruud van Deursen Lorenz Blum Lars Ruddigkeit Julian Schwartz

www.gdb.unibe.ch

Matthias Hediger, Yoshiro Suzuki (UniBE) Daniel and Sonia Bertrand (UniGE)

University of Berne Swiss National Science Foundation ChemAxon

Excellence in Membrane Transport Research