Shortening the Time to a Successful Fragment HTL Campaign

Dr. Sandy Farmer Director, Structural Research Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT

Fragment Based Lead Discovery Expanding the Drug Discovery Process

Traditional Lead Identification

Fragment Based Lead Discovery

- Both LI approaches should be run in parallel
- Both can be executed within the same period of time
- Each has its own set of resource requirements and process details

Typical uHTS campaigns screen ~ 10^6 drug-like compounds against a target Hits are defined as having IC₅₀ values < 10μ M

Typical fragment-based campaigns screen 10^3 - 10^4 low-MW compounds against a target Hits are defined as having IC₅₀ values in the 20 – 1000μ M range

Composition of the Fragment Screening Libraries

Generic FBS Library

A collection of ~ 2,000 highly characterized, non-proprietary compounds satisfying $MW \le 300$; $0 \le ClogP \le 3$; $HD,HA \le 3$; $N_{rot} \le 4$; $N_{fused_rings} \le 3$; $N_{chiral} \le 2$

Fragment HTS Library

A collection of ~ 26,000 fragment-like compounds from the main compound collection Limited characterization; many are proprietary; HT assays are required

Problem

Detection of weakly binding compounds

"Solution"

Highly sensitive biophysical screening methods

- Ligand-detected NMR Spectroscopy (direct binding or displacement assay)
- Surface Plasmon Resonance *(direct binding assay)*
- X-ray Crystallography (direct binding assay)
- Size-Exclusion Chromatography MS *(displacement assay)*
- Fluorescence Polarization (*displacement assay*)

Characterization of fragment binding by biophysical techniques, e.g., calorimetric methods (binding thermodynamics) and SPR (binding kinetics)

Fragment-target co-structures by High-Throughput X-ray (HTX) analysis (binding mode)

Biological activity of fragment hits by specially designed *in vitro* assays capable of measuring IC_{50} values in the 20 – 1000µM range

Fragment Based Lead Discovery *Typical Workflow*

Fragment Based Screening *Binding Assays*

An FBS campaign will always include at least one binding assay. Three screening modalities are regularly employed at BIPI for binding assays:

Surface Plasmon Resonance (SPR - Biacore)

Under development Screen at two fragment concentrations Initially used 100 and 300µM

Fragment Based Screening *Binding Assays*

Size Exclusion Chromatography MS

- Add target (10μM), fragment (1.7mM) and reference inhibitor (10μM) to each well of pinhole plate (~ 25μL)
- Elute by centrifugation through MultiScreen plate containing SEC media
- Capture eluant in collection plate for LC/MS analysis
- Monitor m/z for reference inhibitor

Typical timelines for the steps in the FBLD process are as follows:

Assay Development (protein & FP reagents, validation @ high conc.)	3-6 months	
Screening Activities FBS 1° screening (sp-FP, sp-Enzymatic, dd-SPR, mx-NMR, SE FBS hit confirmation (sx-NMR, re-test hits for other assays) FBS hit triage (dr-FP, dr-Enzymatic)	3 months EC-MS)	
Hit Characterization (HTX, cd-NMR, dr-SPR)	3-6 months	> Overlapping
Fragment HTL (Chemistry, HTX, SPR, FP/enzymatic) Synthesis (external) or purchase of analogs Characterization of analogs Synthesis of elaborated fragments Characterization of elaborated fragments	9-12 months	

Ideally, FBS is run in parallel with conventional uHTS (but this rarely happens!) Fragment HTL initiated within 2-5 months of completing most Screening Activities

Project Goal: Small-molecule inhibitor for treatment of atherosclerosis

Chemistry Goal: Deliver 2 series that meet the following criteria:

 $IC_{50} < 500$ nM, LE > 0.35, % $Q_h < 40$, Solubility > 10µg/ml, Cyp $IC_{50} > 10$ µM

- 2 series from HTS met chemistry goals
- 1 series from FBS met chemistry goals, and 1 series was close
- 26 supporting X-ray co-structures (resolution from 2.02 Å to 1.30 Å)

213 Total Unique Fragment Hits

For all fragment hits

Chymase Project

41% of NMR hits test positive by at least one other primary screening technology.

53% of SEC-MS hits test positive by at least one other primary screening technology.

70% of Enz hits test positive by at least one other primary screening technology.

Fragment Based Lead Discovery Prioritizing Fragment Hits for X-ray Characterization

- Unique SEC-MS hits do yield a significant number of X-ray co-structures and partial fits
- SPR significantly improves the Xray success rate for unique SEC-MS hits

91 fragments analyzedComplete data on all24 co-structures16 partial fits

A fragment hit will generally not be sufficiently potent to be considered a "lead"

A fragment hit having high "ligand efficiency" can be evolved chemically using several strategies:

<u>Grow</u> Extend the fragment hit into adjacent pockets to gain potency

(*de novo* design, chemical libraries)

<u>Link</u> Join adjacent fragment hits to gain potency ("SAR by NMR")

<u>Replace</u>

Exchange part of a lead associated with a liability (e.g., PK) with an overlapping fragment hit

Fragment Based Lead Discovery *The "Replace" Approach to Fragment HTL*

- P1 moiety of compound at top binds as deeply into S1 as the oxindole fragment
- Benzimidazolone core of compound at top repositions itself to enhance its network of interactions

Fragment Based Lead Discovery Profiling the Fragment Replacement in an LO Series

			So	LO	"Frag	ment"	Current Top LO) Compounds	
					Compou	nd at top				
		Structure								
	Human	Chymase IC ₅₀ (nM)	8	5	4	1	12		5	
(Chymase with HSA IC ₅₀ (nM) (fold)		NT		230 (5.6), n = 2		67 (5.6), n = 8		28(7), n = 2	
CatG IC ₅₀ (nM) (fold)		220 (2.5)		5400 (130)		230 (19)		176 (35)		
GSH adduct		detected		not detected		detected		detected		
н	_M (%Q _h)	RLM (%Q _h)	38	25	22	11	45	15	22	6
	CYP 2C9 / 2C19 / 3A4 IC ₅₀ (μM)		>30/>30/>30		14/>30/>30		2.1/8.8/>30		29/>30/>30	
	HT Sol (µ	ug/mL) Caco2 (AB/BA)	10/64	6/16	41/>100	2.4/28	3.3/103	20/27		
	AUC (n	g*hr/mL) Vss (L/kg)	38636	0.13	239	1.04	12653	0.34	Rat RACE: Conc @ 6h	
	T _{1/}	₂ (hr) MRT (hr)	1.12	1.6	0.90	0.41	36	4.3	(10mg/kg)	1.85 μM
	Clearance (%Q _h)		6.0		108		2			
Rat Pl	C _{ma}	_{ıx} (μM) T _{max} (hr)	24	0.42	0.33	0.33	2.3	4.7		
	В	ioavailability (%)	8	7	21	4	12	20		

PO 10 mg/kg PEG water 70/30 PO 10 mg/kg PEG water 70/30 PO 10 mg/kg PEG water 70/30 IV 1 mg/kg PEG water (70/30) IV 1 mg/kg PEG water (70/30)

The "Grow" Approach to Fragment HTL *Comparative Progression of HTS, VSL and FBS Hits*

	HTS Series #1	HTS/VSL Series #2	FBS Series #1
IC ₅₀ (nM)	3	2	0.5
LE	0.35	0.32	0.41
HT-Sol 7.4 ; 4.5 (μg/ml)	1.7;0.4	22.9;0.8	0.46 ; 6.8
HLM (Q _h)	<11.4%	47%	27%
IC ₅₀ (μM) CYP3A4BFC	> 30	> 30	-
IC ₅₀ (μΜ) CYP2D6	> 30	> 30	3
Other IC ₅₀ (nM)	-	325	1.1
<i>Ex vivo</i> IC ₅₀ (nM) *best value from series	52.8nM*	>4µM*	24.5nM

The "Grow" Approach to Fragment HTL *Comparative Progression of HTS and FBS Hits*

Project #2 Lead Series <u>Profile Data for Representative Lead Compounds</u>

	HTS Series #1	HTS Series #3	FBS Series #1	FBS Series #2
K _d (nM)	130	70	108	190
LE	0.37	0.39	0.40	0.40
HT-Sol 7.4 ; 4.5 (μg/ml)	> 35	> 33	6.8;6	<1
HLM (Q _h)	< 30%	< 30%	< 30%	54%
IC ₅₀ (μΜ) CYP3A4	12.4	> 30	> 30	30
IC ₅₀ (μΜ) CYP2D6	12.8	22	> 30	30
IC ₅₀ (μΜ) CYP2C9	0.8	> 30	> 30	15
MDL HitProfiler	No significant responses	NotTested	5HT _{2B} 62% inhibition @ 10µM	NotTested
Cytotoxicity	No findings to $100 \mu M$	No findings to $100 \mu M$	No findings to 100 μ M	No findings to 30μM Major toxic effect at 100μM
LPS/TNF	86% inhibition @ 30mg/kg	83% inhibition @ 30mg/kg	Analog showed 84% inhibition @ 30 mg/kg	NotTested

- Fragment hits and HTS hits can be progressed to the same point in a comparable period of time, but such progression of fragment hits requires more "Faith-Based Synthesis" given the often weak potency during the initial 20-50 compounds
- Progression of a high μ M fragment hit to below 1μ M may require that 20-50 single-point analogs be made to maintain a high LE (> 0.35) and to drive LLE into its desired range (5-7) for drug-likeness
- Parallel synthesis may be contraindicated in the initial stages of fragment evolution because there is a more intimate relationship between "core" and substituent, and because ADME properties should be minimally retained but preferably improved while potency is being driven below at least 1µM
- Fragment SAR, guided by structure, can be used to more rapidly optimize parts of a larger, more potent compound *(applicable even to HTS hits → deconstruct HTS hits to most efficient core)*
- Project #1 shows the benefit of having an initial fragment hit with a high LE (0.35)
- Project #2 shows with FBS Series #1 that a high-quality docking model can drive fragment evolution
- HLM, CYP and HT solubility data should be profiled early on even in Fragment HTL

- Dispensary support for unique FBS processes
- HTS support for enzymatic and/or other non-biophysical HT fragment assays
- Integrated Structural Biology (X-ray, NMR) and Biophysics (SPR, NMR, ITC, FP)
- Dedicated group of chemists (\geq 3)
- Use of external chemistry resources for simple analoging
 - Confirm stability of binding mode
 - Generate fragment SAR
 - Synthesize I- or Br-containing fragment analog(s) for X-ray

Acknowledgements

Fragment Based Lead Discovery

Herbert Nar Stefan Peters Qiang Zhang Xiang Li Jerry Hopkins Jessi Wildeson Jones Anil Padyana **Brandon Collins** Steve Taylor Asitha Abeywardanne Shuang Liang

Chris Corte Sherese Francis Mohammed Kashem Michael August Dan Goldberg Jörg Bentzien John Proudfoot Ingo Mügge Neil Farrow