

Biophysical Methods in Target Validation and Hits-to-Leads

> Glyn Williams FBLD 2010, Philadelphia

Acknowledgements

Astex Biophysics

- Joe Coyle
- Finn Holding
- Glyn Williams
- Past Members
 - Hayley Angove
 - Rob van Montfort
 - Marc Vitorino

Astex Comp. Chem.

- Chris Murray
- Paul Mortenson

Outline

- Biophysical Methods and Detection of False Positives
- Hits, Leads and Ligand Efficiencies
- Thermodynamic Properties of Astex Hits and Leads
- Enthalpy, Entropy and Potency

Astex Biophysics

Biophysical Methods at Astex

therapeutics

False Positives

Common Mechanisms & Biophysical Detection

- <u>Redox-activity (Time dependent)</u>
 - Protein Modification [+O, -2H]
 - LC-MS Δ (Retention Time, Mass)
 - NMR loss of reducing agents and/or modification of ligand
- <u>Aggregation (Time dependent)</u>
 - Protein
 - DLS, MS, NMR etc
 - Ligand
 - NMR buffer LOGSY > 0
 - ITC anomalous ΔH
 - Protein-Ligand complex
 - ITC anomalous ΔH and slow heat output
 - NMR protein LOGSY >> 0
- Superstoichiometry
 - Non-specific binding
 - NMR increased ligand linewidths in presence of protein + no effect of active-site competitor
 - ITC high stoichiometry/ failure to saturate
 - Local aggregation
 - NMR increased ligand linewidths in presence of protein, reversed by active-site competitor

Fragments and Hits

Phys. Chem. Properties of Astex Fragments in Aq. Buffers

- LOGSY effect is negative for freely-rotating, highly hydrated fragments (depends on r^{-6} , τ_r)
- LOGSY effect is small, and may be positive, for poorly hydrated, transiently aggregated fragments

Molecular Weight Analysis of Pyramid[™] (X-Ray) Hits

CONFIDENTIAL

Hits, Leads and Ligand Efficiency

LE versus MW for Pyramid screening hits

- Historical analysis of <u>X-</u> <u>ray hits</u> from fragments in library (375 complexes)
 - LE's derived from IC50 and Kd data (NMR, ITC)
 - Analysis excludes hits with no measurable affinity ("missing" points in bottom left: Kd> 5mM)
 - Higher molecular weight fragments yield lower LE starting points (empty area in top right)
 - 'Best' hits have LE>0.6 and MW<200Da

LE versus MW for All Compounds with ITC data

- Analysis of current <u>ITC</u> data from Astex hits and leads
 - >600 complexes, 19 targets (~100 kinase + ~500 non-kinase)
 - Targeted synthesis has produced many 'optimised hits' with LE>0.4 and MW <300
 - Structure-based design has made many larger compounds (300-500Da) with good LE (>0.3)

Energetics of Fragment Binding (Credo)

- Fragment binding necessitates the loss of +4.2 ±0.6 kcal/mol of rotational and translational entropy at 25°C
- The 5% most ligand efficient, validated Astex hits against 17 diverse targets have LE's of 0.65±0.05 and contain 11.5 ± 2.5 non-H atoms = 'optimised hits'
 - The average binding energy of an optimised hit is 0.65*11.5 = -7.5kcal/mol
 - The average *intrinsic* binding energy of an optimised hit is -7.5-4.2 = -11.7kcal/mol
 - The average *intrinsic* ligand efficiency of an optimised hit is 11.7/11.5 ~1 kcal/mol/atm
- Each optimised hit makes 3 interactions with the protein
 - On average each optimised interaction is worth $-11.7/3 \approx -4kcal/mol$
 - Compare this with gas phase H-bond strengths (e.g. OH---O=C = -7.4kcal/mol)
 - On average ~4 (11.5/3) non-H atoms are required to form each interaction
 - average size of functional group + linker atoms

Potencies of smaller fragments (reductio ad absurdam)

- While the best Astex hits have LE=0.65 ±0.05 and 11.5 non-H atoms, a more typical screening hit has LE~0.4 and 13.5 non-H atoms
 - 'typical' Astex screening hits have intrinsic binding energies of ~9kcal/mol or about 3kcal/mol/interaction
- If current Astex hits are ~12 atoms and make 3 optimised interactions. What might be expected from smaller fragments?
 - 2 optimised interactions (~ 8 non-H atoms)
 - Intrinsic binding energy \approx -2 * 4 = -8kcal/mol
 - <∆Gbind> = -8 + 4.2 = -3.8kcal/mol (LE= 0.45)
 - $Kd \approx 2mM$
 - 2 *non-optimised* interactions (~ 8 non-H atoms)
 - Intrinsic binding energy \approx -2 * 3kcal/mol = -6kcal/mol
 - $<\Delta$ Gbind> = -6 + 4.2 = -1.8kcal/mol (LE= 0.23)
 - *Kd* ≈ 50*mM*

Hits-to-Leads & Group Efficiency (GE)

- Hits (fragments) are grown into leads by adding functional groups which make new interactions with the protein
- If optimal, each additional interaction *could* add up to -4kcal/mol to ΔG_{bind}
 - Since each functional group is (on average) 4 atoms, group efficiencies of 1.0 are feasible
 - More realistically, improvements of -3kcal/mol (GE=0.75) would be expected if the new group is as close to optimal as a typical fragment.
 - If the first fragment has already found all the best 'hotspots', then GE<0.75
- In practice, measured GEs span a larger range than fragment LEs
 - GE>1.0 is not uncommon & GE<0 is quite possible!
 - Improvements in affinity caused by addition of small groups to a fragment are more easily detected than the binding of the small group itself

Group efficiency example - PKB

NH₂

therapeutics

$ \begin{bmatrix} 1 \end{bmatrix} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \qquad$	ompound	Compound	nd Pyr	Me	Phe1	EtNH2	Phe2	Cl	DG
$ \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	1]	[1]	\checkmark	\checkmark	\checkmark				-6.0
$ \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \qquad$	2]	[2]	\checkmark	\checkmark	\checkmark	\checkmark			-7.6
$[4] \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad -9.0$	3]	[3]	\checkmark		\checkmark				-5.7
	4]	[4]	\checkmark		\checkmark	\checkmark	\checkmark		-9.0
$[5] \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad -10.6$	5]	[5]	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	-10.6
[6] \checkmark -3.1 ^{a)}	5]	[6]	\checkmark						-3.1 ^{a)}
dG -7.3 ^{b)} -0.3 -2.5 -1.6 -1.7 -1.6	lG	dG	-7.3 ^{b)}	-0.3	-2.5	-1.6	-1.7	-1.6	
<i>GE</i> 1.5 0.32 0.42 0.54 0.28 1.6	iΕ	GE	1.5	0.32	0.42	0.54	0.28	1.6	

Average Thermodynamic Properties

$\Delta H_{bind}~vs$ -T ΔS_{bind}

therapeutics

	∆G	ΔH	-T∆S
Ave. value	-8.7	-8.9	+0.2
Max-Min	9.0	26.7	21.7

- All current Astex ITC data with good stoichiometry and reliable ∆H (490 datasets)
- On average Astex hits and leads are enthalpy driven with small (~0) entropies of binding
- The range of Δ H and T Δ S values is 2-3x the range of Δ G ('Enthalpy-entropy compensation')

Kd=1uM

How do ΔH and -T ΔS behave as ΔG improves?

• Arrange data in order of increasing affinity and plot ΔG , ΔH and $-T\Delta S$ against $-log_{10}K_d$

On average, how do ΔH and $-T\Delta S$ behave as ΔG improves?

 Arrange data in order of increasing affinity and plot a running (20 point) average of ∆G, ∆H and -T∆S against -log₁₀K_d

On average, how do thermodynamic properties change during hits-to-leads?

All Astex T	argets & Ligands						
Affinity Range	Description	No. of Targets	No. of Ligands	<∆G> kcal/mol	<∆H> kcal/mol	<-T∆S> kcal/mol	<le> kcal/mol</le>
>100uM	Fragment Hits	8	22	-4.9	-5.0	0.0	0.35
1uM-100uM	Optimised Hits	17	192	-7.0	-7.1	0.1	0.39
10nM-1uM	Leads	15	186	-9.3	-10.5	1.2	0.41
<10nM	Optimised Leads	5	90	-11.9	-10.1	-1.8	0.45

Thermodynamic Properties of HSP90 Lead Series

HSP90: Amino-Pyrimidine Thermodynamics

HSP90 Amino- pyrimidines						
Affinity Range	Classification	No. of Ligands	<∆G> kcal/mol	<∆H> kcal/mol	<-T∆S> kcal/mol	<le> kcal/mol</le>
>100uM	Fragment Hits	2	-4.9	-5.3	0.4	0.38
1uM-100uM	Optimised Hits	8	-7.5	-6.5	-0.9	0.44
10nM-1uM	Leads	36	-9.6	-8.4	-1.2	0.49
<10nM	Optimised Leads	6	-11.4	-15.4	4.0	0.55

- Binding is enthalpy driven during all phases
- Series is more ligand-efficient than the average (0.35-0.45)
 - HSP90 is highly druggable
- LE improves steadily from "hits" to "optimised leads"
 - cannot be due to attrition of hits and leads with low LE
 - must be due to addition of interactions with good group efficiencies
- This series bucks the average trend that entropy improves in final stages (Kd<10nM)

From Hits to Optimised Leads

HSP90: Resorcinol Thermodynamics

HSP90 F	Resorcinols					
Affinity Range	Description	No. of Ligands	<∆G> kcal/mol	<∆H> kcal/mol	<-T∆S> kcal/mol	<le> kcal/mol</le>
>100uM	Fragment Hits	3	-5.0	-1.9	-3.1	0.36
1uM-100uM	Optimised Hits	1	-8.0	-2.6	-5.4	0.35
10nM-1uM	Leads	9	-10.2	-8.2	-1.9	0.46
<10nM	Optimised Leads	63	-12.1	-9.2	-2.9	0.46

- HSP90 Resorcinol series (HSP90 series 1) is distinct from the average
- Binding is <u>entropically</u> driven during the early phases
 - displacement of tightly bound water molecules
- LE *appears* to improve discontinuously
 - very sparse ITC data for "optimised hits" (n=1)
 - in this range, assay (IC50) data give $<\Delta G>= -6.4$ kcal/mol & <LE> = 0.41 (n=4)
 - series made rapid progress from hit to 1uM lead (5 compounds)

NR"2

R

OH

HO

From Hits to a Clinical Series

Summary of HSP90 Thermodynamics

- Amino-Pyrimidine and Resorcinol series are thermodynamically distinct
 - Clinical candidate came from less-enthalpically favoured series (resorcinols)
 - Selection was made on basis of PK/PD properties
- Important growth points on fragment can be more easily identified from changes in ΔH than ΔG
 - enthalpy-entropy compensation ensures |∆∆H| > |∆∆G| when the fragment is modified
 - may be useful to select growth points if X-ray structures were unavailable

Enthalpy-Driven, Entropy Driven or just Potent?

Free Energy and the Universe

- The terms "Entropy- or Enthalpy-driven" reflect differences in the proportion of entropy that is created in the *System* or in the *Surroundings* during the reaction
- One way in which this can be quantitatively expressed is to define 'Index (E-E)'

Index
$$_{(E-E)} = (\Delta H + T\Delta S)/(\Delta H - T\Delta S)$$

-T(ΔS $_{Surroundins}$ - ΔS $_{System}$) -T ΔS $_{Universe}$

Index (E-E)

$$Index_{(E-E)} = (\Delta H + T\Delta S)/(\Delta H - T\Delta S)$$

Scale is normalised by $\Delta G \Rightarrow$ can be used to compare fragments and leads

- Are enthalpically-driven ligands more ligand efficient?
- Are the most potent Astex compounds more enthalpically-driven?

Index $_{(E-E)}$ vs LE and ΔG (490 Interactions)

 but largest variation is observed for compounds with low LE but most potent compounds have LE between 0 and ~1 (ENTHALPY and entropy driven)

Summary

'An Investment in Knowledge Always Pays the Best Interest'

-Benjamin Franklin

Lessons from Biophysics

- Measurement of weak affinities (mM) adds value to hits and to understanding of targets and libraries (long-term benefits)
 - ITC and NMR provide reliable data at the cost of protein
 - On average, fragment binding is driven principally by enthalpy
 - SBDD maintains favourable enthalpies
- Growing fragments and improving LE has been easier than expected
 - most of the entropic penalty for binding is paid when the fragment is small
 - group efficiencies >1 are feasible, but unlikely unless growing into regions where fragment binding has already been observed ('hot-spots')
 - fragments which make only 2 interactions will be difficult to detect (Kd ~ 2-50mM)
 - changes in ΔH reveal potential growth points but ΔG is more readily optimised
- 'Day-to-day' value is in detection of 'false positives' (undesirable MoA)
 - anomalous enthalpies (ITC)
 - line broadening or anomalous LOGSY intensities (NMR)
 - changes in protein mass (Tof-MS)

Thank you www.astex-therapeutics.com