Fragment-based screening for inhibitors of PDE4A using enthalpy arrays and X-ray crystallography

Michael Recht October 12, 2010

Activity pre-screening using Enthalpy Arrays

Binding site identified

Further K_I, K_d data _____ adds value

Follow-up: elaboration, linking, etc.

Measure heat as a function of time

Measure heat evolution from a single reaction

K_I from enthalpy

Rate at which heat evolves is function of K_I

Rate at which heat evolves is function of K_I

Enthalpy Arrays

Miniaturized calorimetry

- 250 nl drops, ~25 pmole reagent
- 72 detector array

- Technology challenges
 - Detectors with <20 µK thermal noise
 - Minimizing environmental effects
 - Rapid mixing

Reducing Environmental Effects

Heat Transport during a Measurement

Isothermal reaction initiation

Electrostatics

Magnetic mixing improves sensitivity

- Cobalt stir bar
- Fast mixing confirmed by FRET experiments, BaCl₂/18-crown-6 and enzyme reaction data
- Bars coated with SiON and PEGylated

Determining enthalpy and kinetic parameters from temperature data

Measurements

Enzyme kinetic parameters from individual samples

Trypsin hydrolysis of BAEE

 $5 \,\mu\text{M}$ trypsin, $5 \,\text{mM}$ BAEE

Measurements

K_I for competitive inhibitors

Inhibitor	K _ι , μM measured	K _ι , μΜ literature	k _{cat} , sec⁻¹ measured	k _{cat} , sec ⁻¹ literature
benzamidine	43	18	8.3	15-22
leupeptin	0.13	0.13	6	-

Notes:

1. Determination of K_I assumes competitive inhibition and K_M =6.4 μ M.

2. Calculation of k_{cat} assumes the enzyme concentration is 5 μ M.

Measurements

- One of four PDE4 enzyme family members (PDE4A-D)
- PDE4 inhibitors
 - Anti-inflammatory therapeutics
 » Asthma, COPD
- cAMP-specific phosphodiesterase
- Expressed in many cell types, tissues
- Several splice variants produced

PDE4A known inhibitors

Good agreement with values in literature

IBMX

100 mM Tris-HCI (pH 7.5), 10 mM MgCl₂, 1 mM TCEP

1. Owens et al, Biochem. J. 1997, 2. Rao et al, Chem. Biol. 2005

PDE4A activity based fragment screen

- Catalytic domain of PDE4A10
- 160-compound library
 - Average MW = 154 Da, # Heavy atoms = 10.4
- Obtained k_{cat} and K_M for every reaction in presence of each compound
- Competitive inhibitors produce an apparent increase in K_M
- Control reactions (no inhibitor) performed for every 5 compounds tested

PDE4A activity based fragment screen

Compounds tested at 2 mM Hit defined as $K_{M,app} \ge 2X K_{M,control}$

PDE4A inhibition – detection of hits

Compound 49, $K_1 = 1.4 \text{ mM}$

Compound 50, not a hit, $K_1 > 2mM$

PDE4A inhibitors – range of K_I

Compound 48, $K_1 = 2 \text{ mM}$

Compound 80, $K_1 = 0.32 \text{ mM}$

K_I pre-screening identified 11 compounds to follow-up by X-ray crystallography

Compound	K _I (mM)	Ligand Efficiency
113	0.81	0.32
81	0.58	0.40
80	0.32	0.39
88	0.56	0.36
96	0.71	0.35
109	1.34	0.39
33	1.10	0.36
48	2.00	0.40
49	1.40	0.43
73	0.37	0.38
111	0.46	0.35

Preliminary structure of hit 113 shows hydrogen bond with N533

- Preliminary 3.0 Å structure of 113 with PDE4A10
- 113 ketone is hydrogen bonding with Asn 533 which is implicated in AMP binding
- Asn533 rotates to accommodate fragment

Binding of AMP to PDE4D

 Adenosine of AMP hydrogen bonds to both N321 and Q369 in PDE4D

Corresponding residues in
 PDE4A are N533 and Q581

Fragment hits with adenine binding motif

Conserved in multiple fragment hits

Quinoline fragment hits share binding motif with known PDE4 inhibitors

Hersperger et al., J Med Chem 43, 675-682 J Med Chem. 43: 3820-3 (2000)

Quinoline (naphthyridine) motif hydrogen bonds with Q581

Co-crystal structure of PDE4A10 with NVP shows hydrogen bond between 1,7 naphthyridine nitrogen and Gln 581

Wang et al., Biochem Journal (2007) 408, 193-201

Co-crystal structure of PDE4D shows hydrogen bond between quinoline nitrogen and structurally conserved Gln 535 *Burgin et al., Nature Biotechnology (2010) 28 63-70*

Compounds with $K_1 \le 2 \text{ mM}$

	Compound	K _I (mM)	Ligand Efficiency
Structure	-113	0.81	0.32
	81	0.58	0.40
	80	0.32	0.39
	88	0.56	0.36
	96	0.71	0.35
Adenine motif	109	1.34	0.39
	33	1.10	0.36
	48	2.00	0.40
	<u>49</u>	1.40	0.43
Quinoline	73	0.37	0.38
	111	0.46	0.35

- Calorimetric enzyme activity based fragment screen
- Identified competitive inhibitors of PDE4A with LE > 0.35
- X-ray crystallographic follow-up in progress

Acknowledgements

PARC

Frank Torres Alan Bell Dirk De Bruyker Richard Bruce

Funding - NIH

R01EB009191 R01GM077435

Zenobia Therapeutics

Vicki Nienaber Vandana Sridhar Barbara Leon Leslie Hernandez John Badger

Sorrento Technologies

Duncan McRee Sridhar Prasad

