Twinning and other pathologies

Andrey Lebedev

CCP4

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

OD-structures

- identical layers
- identical interfaces between the layers
- but: two or more ways of packing three adjacent layers
 - *) MX: "identical" means Ca r.m.s.d. < 1 A

- *) S_1 and S_2 . are called stacking vectors
- two-dimensional periodicity
- a potential for disorder in the third dimension

Example 1: OD-twin (twin by lattice pseudomerohedy)

L-2-haloacid dehalogenase from *Sulfolobus tokodaii* Rye *et al.* (2007) *Acta Cryst.* **D**67

The diffraction images can be indexed in C2 with two different orientation of the crystal

Some reflections from two lattices overlap.

C2

C2

OD-twin: real and reciprocal lattices

Twinning by reticular merohedry with twin index 10 and obliquity 0.1°

Integration of a single lattice: in effect, twinning coefficient depends on h

APS Workshop

Intensities of the overlapping reflections

Fourier transform of the tetramer

Diffraction pattern of domain 1 Diffraction pattern of domain 2

Tetramers in different twin domains are in the same orientation

Therefore, if reflections of the two lattices overlap, they have close intensities. The stronger the overlap, the closer the intensities are.

Demodulation

Original data: R / R-free = 0.21 / 0.27

Modulation function

 $q'(h) = p_0 + p_1 \cos(2\pi th) + p_2 \cos(4\pi th)$ + ...

Corrected data: R / R-free = 0.16 / 0.23

OD-twin: Improvement in the electron density

Visually, improvement occurred only for the electron density for solvent molecules

(Poor density for solvent was the original reason for data revision)

The electron density maps (2-1 at 1.5σ and 1-1 at 3σ) around the pyruvate molecule before and after demodulation

OD-structures

Classification: OD-structures vs. twins

This is structure based classification of a specific class of structures

This is geometry based classification accounting for crystal and lattice symmetries.

Symbols for groupoid symmetry

 $P \ 1 \ 2 \ (1) \\ \{ \ 2_{P} \ 1 \ (2_{2}) \}$

In 2_p , P is a non-integer subscript.

Special values of P correspond to space group symmetry or specialised groupoid symmetry

The following types are possible

(I) two surfaces of a single layer are identical;

(II) two surfaces of a single layer are different and contacts are made by different surfaces.(III) two surfaces of a single layer are different but contacts are made by identical surfaces.

An example of symbol for groupoid of type (III):

Ρ	1	1	(4)	1	1	
{	2 _P	2 _Q	(1)	2 _U	$2_{\rm V}$	}
{	2 _{P'}	2 _{Q'}	(1)	2 _{U'}	2 _{V'}	}

Example 2: OD-twin with zero obliquity

Uppenberg *et al.* (1995). *Biochemistry* **34**, 16838-51.

Molecule: Lipase B from *Candida antarctica*

PDB code 1lbs

Space group: C2 a = 95.9 Å, b = 95.6 Å, c = 81.8 Å β =122.2°

OD layer: P(2)2₁2₁

 The data were processed in C2 but in the twin lattice (twin index = 3)

a'=229.5 Å, c'=86.8Å, β=90°

- non-overlapping reflections from the minor twin component were removed
- overlapping reflections were detwinned

Example 2: OD-twin with zero obliquity

This packing could be assumed by similarity with the previous example

This packing is more likely to occur as it explains the exactly orthorhombic twin lattice

The previous example: This example: twin index 10 twin index 3 obliquity 0.1° obliquity 0°

In general, protein OD-twins frequently have zero obliquity (twins by metric merohedry)

Example 3: allotwin

Crystals of Lon protease Resolution 3Å

Dauter *et al.* (2005). *Acta Cryst.* D**61**, 967-975.

P21	a = 48.5 Å
1	b = 86.3 Å
	c = 138.0 Å
	β = 92.3°

P2₁2₁2₁

a = 86.3 Å b = 90.6 Å c = 148.0 Å

Example 3: allotwin

Crystals of Lon protease Resolution 3Å

Dauter et al. (2005). Acta Cryst. D61, 967-975.

Structures of both crystal forms were solved

P2₁2₁2₁

R / R-free

0.19 / 0.35

0.21/0.31

Crystal disorder

Twinning, partial disorder: Missing global periodicity

Example 4: partially disordered OD-structure

Wang *et al.* (2005). Acta Cryst. D**61**, 67-74.

Crystals of Phi29 DNA polymerase Resolution 2.2Å

The translation symmetry is not global in the direction a^* .

The diffraction pattern is characterized by the presence of the diffuse streaks along *a**.

The structure was solved using demodulated data and experimental phasing

Refinement against corrected data: R=0.28

Example 5: Partial disorder with several stacking vectors

Trame, C. B. & McKay, D. B. (2001). *ActaCryst.* **D57**, 1079–1090.

model of P222₁ single crystal

model of disordered crystal

Heat-shock locus U protein from Haemophilus influenzae and its complexes

Several crystal forms, all partially disordered OD belonging to different OD-families.

Data:	
Resolution	2.3Å
Processed in	P622
a = 110.6, c = 335.	8

OD layer: P(6)22

Four types of domains

Enantiomorphic stacking vectors

(1)

Structures (1) and (2)

- belong to different space groups:
 - (1) P3₁ (2) P3₂
- are not necessarily related by inversion
- but have the same structure amplitudes:

F(1) = F(2)

 and belong to the same OD family

(2)

Enantiomorphic stacking vectors

Gulbis et al. (1996). Structure of the	Space group:	P3 ₂ 21
C-terminal region of p21WAF1/CIP1	a = 83.5 Å, c = 233.9Å	_
complexed with human PCNA.		
<i>Cell</i> 87 , 297–306.	OD layer:	P(3)21

PDB code 1axc

Structure:	from PDB	generated
Spacegroup:	P3 ₂ 21	P3 ₁ 21
R (%):	22.09	22.35
R-free (%):	29.15	30.02

Asymmetry of OD layer is within 0.2Å, but it helps choosing the right space group

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Twinning by (pseudo)merohedry

Twins by reticular merohedry (inc some OD-twins), allotwins, disordered structures

- Can be readily seen in images with predictions

Important special case: twinning by (pseudo)merohedry

- All spots overlap with related spots from another individual crystal
- Detection requires analysis of intensity statistics
- More significant effect on model if ignored
- Space group determination may be a problem

Monoclinic OD-twin (twin by pseudomerohedry)

Au et al. (2006). *Acta Cryst*. D**62**, 1267-1275.

Ferrochelatase-1 from B. anthracis

PDB code 2c8j

Space group:P21Resolution2.2Å

a = 49.9, b = 109.9, c = 59.4 Å $\alpha = \beta = \gamma = 90^{\circ}$

OD layer: P2(1)1

June 22, 2012

Monoclinic OD-twin (twin by pseudomerohedry)

P2₁ true structure

The lattice is exactly orthorhombic (twin by metric merohedry)

P2₁2₁2 reference fully ordered structure

molecules shifted along **c** by 2.5Å

Twinning was suspected only after several unsuccessful attempts at solving structure in an orthorhombic space group

Tutorial

Ferrochelatase-1 Tutorial:

Space group assignment in the presence of pseudosymmetry and twinning

Data:

http://www.ysbl.york.ac.uk/mxstat/andrey/hemh.html

- OD-twin by pseudomerohedry
- use of pointless for point group detemination in a relatively difficult case
- use of molecular replacement

Twinned refinement against non-twinned data

Beginning of refinement:

Two unrelated structures, one is twinned

Twinning coefficient would converge to 0.5

APS Workshop

Switching to twin refinement

Examples of crystal pathologies

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Theoretical distribution of intensities

Two good, two bad

C-terminal domain of gp2 protein from phage SPP1 perfect twin

Bad example 1

PDB code 1l2h partial twin

Bad example 2

human deoxycytidine kinase single crystal

Twinning tests in CCP4I (ctruncate)

	○ ○ ○ X CCP4 Pr	ogram S	uite 6	5.1.2 CCP4In	terface 2.0.	5 running on ma	acf32-7.local	Pr	roject: Andrey				
									Change	e Project	Help		
1	 Data Reduction	-	1	16:02:19	FINISHED	truncate_anl	1m14	\Box	Directories&F	rojectDir			
	Data Processing using Mosfim								View Any	File			
	Mort Integrated Data								View Files from Job		- 1		5
	Find or Match Laue Group								View LogFile in Web	Browser		1	
	Scale and Merge Intensities								View LogSummary	n Web Bro	owser		
	Utilities								View Log File				
	Automated Data Processing								View Log Graphs				6
2	 ▼ Check Data Quality								View Annotated Log	in Web Br	rowser		
3	 Analysis with ctruncate								Input files				
	···· Analysis with sfcheck								twin.mtz				
									Output files				
									Mow Command Ser	inte		-	
									Add notebook entry	prs			
								∇	Tha notebook entry				
									Mail CCP4	Exi	t		

Job title 1ml							
Input data	are intensities from S	Scala 💴					
Use old Tr	uncate program						
🔳 Ensure u	nique data & add FreeR col	umn for <mark>0.05 </mark>	action of data. 🔲 🤇	Copy FreeR from anot	her MT		
Extend reflections to higher resolution:							
	ioodono do mignor roconado						
MTZ in 1006	04_Hemt: <mark> pointless1_sc</mark>	ala1.mtz		Browse	View		
MTZ in 1006_	04_Hemt:= pointless1_sc _04_Hemt:= pointless1_t	ala1.mtz truncate2.mtz		Browse	View View		
MTZ in 1006 MTZ out 1000 Identifier to a	04_Hemt: pointless1_sc _04_Hemt: pointless1_t ppend to column labels	ala1.mtz truncate2.mtz		Browse Browse	View View		
MTZ in 1006 MTZ out 1000 Identifier to a <i>Ctruncate op</i>	D4_Hem1:- pointless1_st _04_Hem1:- pointless1_t ppend to column labels	ala1.mtz truncate2.mtz		Browse Browse	View View		

4

Cumulative intensity distribution

To compare: Red: Acentric theoretical, Blue: Acentric observed $Z \approx |E|^2$

Untwinned data

Twinned data

> Cumulative intensity distribution> Cumulative ... (Centric and acentric)

Second moments of Z (fourth moments of |E|)

Compare the experimental curve with the line $\langle E^4 \rangle = 2$

Untwinned data

Twinned data

> Acentric moments of E for k=1,3,4 > 4th moments of E ...

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

H-test and L-test

L = |J1 - J2| / (J1 + J2)

sublattices with strong and weak reflections (pseudotranslation)

H = |J1 - J2| / (J1 + J2)

twin axes

H-test and L-test

sublattices with strong and weak reflections (pseudotranslation)

Theoretical distribution of H

Distribution of H can be perturbed by NCS and weak observations

Blue:

ideal distribution for partial twin

Green: blue + effect of NCS axis || twin axis

Red:

green + effect of
intensities with small I/ sig(I)

Examples of experimental P(H)

An almost ideal case

+ effect of NCS axis || twin axis + effect of intensities with small I/ sig(I)

Relations between point groups

Red arrows: No constraints are needed, merohedral twin could happen Black arrows: Additional constraints on cell parameters are needed, psedo merohedral twinning can happen

H-test and L-test

sublattices with strong and weak reflections (pseudotranslation)

twin axes

Theoretical distribution of L

Distribution of L can be strongly perturbed by weak observations

Statistics of one intensity are strongly affected by pseudotranslation

1jjk: Pseudotranslation results in alteration of 000 strong and weak reflections File Appearance Edit Utilities 0 . > 4th moments of F ...

X Loggraph 9_truncate_anl.log

Help

L-test and H-test are not affected by pseudotranslation

> L test for twinning> cumulative distribution function for |L|

> H test for twinning (operator ...)> cumulative distribution function for |H|

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Why so many tests?

	Statistics of one observation		Statistic observ	s of two vations	
	P(Z)	<z^2></z^2>	H-test	L-test	
Specific for a given resolution shell	No	Yes	No	No	
Specific for a given twin operation	No	No	Yes	No	
Can detect perfect twinning	+	+	-	+	
Works for incomplete data	+	+	_	+	
Insensitive to pseudotranslation	—	—	+/-	+	
Insensitive to anisotropy	—	—	+/-	+	
Insensitive to weak reflections at high resolution	_	()	_	_	

Are these tests always sufficient?

How to handle the cases with strong pseudosymmetry?

Validation of crystallographic symmetry instead of twinning tests: refinement in space groups compatible with

- unit cell
- current model (considered as at least approximately correct)

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

An example of symmetry correction

PDB code:	1yup	
space group (PDB):	P1	8 molecules per a.u.
space group (true):	P2 ₁	4 molecules per a.u.
Pseudo-symmetry space group: (because of pseudo-translation)	C2	2 molecules per a.u.

Monoclinic structures related to 1yup

June 22, 2012

Structure solution and symmetry validation

Zanuda: space group validation

Algorithm:

- From input model: determine pseudosymmetry space group (PSSG)
- From PSSG: select subgroups with observed unit cell
- For each such subgroup:
 - Convert model and data into the subgroup
 - Restrained refinement
- Repeat refinements of the best (R-free) model
 - Starting from P1
 - Adding the best (r.m.s.d.) symmetry element at each refinement
 - » Terminate if there is no symmetry elements to be added
 - » Terminate and cancel the last symmetry element if R-free jumps

Zanuda: limitations

Assumptions:

- The pseudosymmetry is very strong (r.m.s.d. from exact symmetry \approx 1A)
- The structure is almost correct
 - although it might have been refined / rebuilt in an incorrect space group

If assumptions are not satisfied, the results will likely to be wrong.

YSBL server

http://www.ysbl.york.ac.uk/YSBLPrograms/index.jsp

CCP4I interface

CCP4I > Validation & Deposition > Validate space group

000		🔀 Zanuda							
				Help					
Job title				\Box					
Transform input model and data into subgroups of the pseudosymmetry space group (PSSG)									
	and REFINE all transformed models and save the best model 🗾								
	IETRYSE inp	ut model (i.e. transform it into PSSG) before further transformatio	ons						
MTZ in	Full path	/Users/andrey/1-Shelf/ZanudaGUI/22_Src/Examples/01_std.	Browse	View					
PDB in	Full path	/Users/andrey/1-Shelf/ZanudaGUI/22_Src/Examples/01_std.	Browse	View					
MTZ out	zn01	model_zanuda1.mtz	Browse	View					
PDB out	zn01	model_zanuda1.pdb	Browse	View 🗸					
	Run	Save or Restore 💻	Close						

Starting from ccp4-6.3.0 (forthcoming release)

Acknowledgements

Eleanor Dodson Roberto Steiner Zbigniew Dauter Gleb Bournkov Michail Isupov Garib Murshudov University of York King's College, London APS, Chicago EMBL-Hamburg University of Exeter University of York

All the authors of cited papers