On some implications of non-crystallographic

symmetry

Andrey Alekseyevich Lebedev

A Thesis submitted for the degree of Doctor of Philosophy

The University of York
Department of Chemistry
April 2009



Abstract

The standard molecular replacement (MR) protocol involwes-by-one search for molecules
composing the asymmetric unit, therefore the non-cryxjediphic symmetry (NCS) compli-
cates the structure determination. However, the conservaf the oligomeric state in a series
of homologues and the use of information about the NCS in dinget crystal may help to
solve difficult MR problems. A number of the NCS cases whicheh@quired tailor-made MR
protocols for successful structure solution are preseintehlis thesis. The ultimate goal is to
rationalise these approaches and implement them as sugqiamy pathways for MR pipelines.

Intermolecular contacts in a macromolecular crystal care kabstantially different strengths
as, for example, in crystals composed of natural oligorars) order-disorder (OD) structures
with stronger interactions within diperiodic OD-layerdameaker interactions between the lay-
ers. Symmetry of the tightly bound assembilies is often ngstallographic, whereas weaker in-
teractions are adjusted to enable three-dimensionalataregal symmetry in the crystal. Weaker
interactions can vary between different crystal forms \parphs) or even within one crystal
to give rise to NCS by translation, twinning or crystal dider. Several twins, structures with
translational NCS and OD-structures are presented intibisd.

In some cases, the relation between NCS and twinning givéssaght into the twin mor-
phology. Two examples of macromolecular twins are disalissewvhich the NCS analysis
explained the accidental lattice symmetry. In another ,cdmeNCS defined the geometry of
twinning by reticular merohedry, so an accurate detwinniag possible without precise mea-
surements of relative orientation of the alternative deti

The twin axis can be aligned with an NCS axis. High relatiegjfrency of such twinning
cases in the Protein Data Bank is demonstrated and the effestich interference between
twinning and NCS on the intensity statistics is analysedrtwipe guidelines for interpretation
of the standard twinning tests. The alignment of NCS and s is typical for OD-twins by
metric merohedry and one of these twins is analysed in detail

Standard MR is easily adaptable to the case of the transétidCS without significant
changes in the algorithm or protocol. However, translaidiCS imposes a problem of false-
origin MR solution, as is demonstrated in this work. Thresesaare described, in which such
problem had occurred and was resolved, and which prompteégign the progranZanuda
that automatically handles false-origin MR solutions als® @nables validation and correction
of the space group assignment in pseudosymmetric twins.

Thus, the two distinct topics of this thesis are the NCS glifd&R, and diagnostics of twin-
ning and incorrect symmetry assignment. Both lines of meselaave a common goal, to extend

the boundaries of existing methods of macromolecular stracsolution.
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1 Introduction

The method of molecular replacement (MR) is most suitabtecfgstal structure solution of
complexes, mutants and close homologues of a macromoladtiieknown structure. Some-
times the structure of a distant homologue can be solvedev®rt in apparently easy cases a
straightforward structure solution may be prevented by-tnioral organisation of a given crys-
tal. A general overview of MR§(L.1) is therefore followed by discussion of twinningl(2),
which frequently obscures a correct MR-solution. Finalhg theory of OD-structures and sev-

eral examples of OD-twins are presentédl.g).
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1.1 Molecular replacement
1.1.1 Original meaning of the term

In current understanding, the term MR relates to a seriesatiéfon function superposition
techniques and auxiliary methods targeting at the positgpof known molecular fragments in
unknown crystal structure. When implemented for the firsetiNordman & Nakatsu, 1963),
the method was not referred to as MR; instead, the term MR n¥ally assigned to a method,
which was thought to be suitable for determination of ehtitenknown molecular structure
given (non-anomalous) diffraction data for two polymormdor a single crystal but contain-
ing more than one molecule in the asymmetric unit. Rossmamiofy (1962; 1963) referred
to Shannon’s theorem and pointed out that diffraction datd#ained sufficient information to
estimate phases provided that there were two or more copi@s onknown molecule in the
asymmetric unit or diffraction data were available for twonaore different crystal forms. A
series of proof-of-principle works outlined the procedimeolving the following three steps:
() the search for relative orientations of identical (bukoown) electron density fragments
(Rossmann & Blow, 1962; Tollin & Rossmann, 1966); (ii) theuss for the position of these
fragments in the crystal(s) (Rossmaenal, 1964); (iii) solution of “molecular replacement
equations” (Rossmann & Blow, 1963, 1964; Main & RossmanBg) ¢hat restores phases. Sev-
eral macromolecular polymorphs and several cases of na@tatiographic symmetry (NCS) in
protein crystals were already knowsd. Scouloudi, 1960 and references in Rossmann & Blow
1962; 1963) and the new method seemed to be very promisempbaktause of rapidly increas-

ing computer power.

1.1.2 NCS averaging

The molecular replacement equations are reciprocal smansufations of the identity of the
electron density in two or more non-equivalent positionsvas demonstrated practically (Muir-
headet al,, 1967, and references in Bricogne, 1974) and theoreti(Bligogne, 1974) that these
equations can be solved by averaging of the electron deinsibye real space provided reason-
able starting phases are available.

Therefore the third step of the originally assumed sceradtidR evolved in what is presently
termed as NCS averaging (Cowtan & Main, 1993), although ¢hm tMR was for a while ap-
plied to this procedure (Argast al., 1975).

The phasing of viral structures starting from the sphereeielope is the closest method to
the originally assumed MR scenario (Chapneaml., 1992, and references therein). However,
such method of structure determination was only possibbaume of up to 60-fold averaging.

Even in these very favourable cases the “Mad’ initio phasing required precise estimation of
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starting model parameters, the spherical shell radii. fee the prerequisites of the procedure
are either good X-ray measurements at very low resolutioaxperimental data obtained by

other methods such as low angle X-ray scattering or electioroscopy.

1.1.3 MR with known search model

The first two steps of the original MR scenario have clear tenparts in contemporary MR
using a template structure.

The rotation function (RF) is typically used for two purpssas the self-rotation function
(SRF) to find NCS operations and as the cross-rotation fom¢CRF) to find the orientation of
the template best matching the orientation of the molespia(the crystal. The two functions
differ in the objects to which they are applied, but both adrthare conceptually identical to
the RF by Rossmann & Blow (1962), which is an overlap functetween spherical domains
of a fixed Patterson map and a rotated copy of the same or arRdltterson map. The SRF is
used in the preliminary analysis of the diffraction data #me CRF accomplishes the first step
of contemporary MR to define the orientation of the searchehadthe algorithms that are used
for calculation of the RF are discussed below.

The translation function proposed by Rossmatal.(1964) was intended to find the relative
positions of the centres of two copies of an entirely unknomaiecule given their orientations.
The proposed method is in practice only applicable to mdéscrelated by two-fold rotation in
a crystal with low crystallographic symmetry and NCS (idlgedlvo molecules per unit cell). An
extension of the method to structures with many moleculesmiecell would apparently require
precise information on the molecular shape, and relatisgheradhan exact two-fold rotation
between two molecules in question would require knowledgaeinternal organisation of the
molecule, essentially the search model. On the other haedntprovement of phases is only
possible with high-order NCS.

The translation function (TF) in the problem with known sdemodel is conceptually dif-
ferent from the initially proposed translation functiohuses the complete Patterson map and
the molecular envelope need not be defined explicitly, itisadly applicable to any two orien-
tations of the search model and in later versions it accdientsll symmetry related molecules
in a single run. The theory of the contemporary version ofTtRas briefly discussed below; it
is used in the second step of the standard MR protocol, thégrasg of the model in the unit

cell of the target crystal.
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1.1.4 Rotation function

Given two Patterson functiord andP, and a spherical domald centred at the origin, the RF

R(0) = /// P(r) Po(071r) dr?, (1)
U

whereo is a variable rotation matrix. Two widely used parameteioss of the rotation space

is defined as

are Euler angles, 5 and~ and polar angle®, v, x. The first set of angles is convenient
for computations, whereas the second set can be more suftabtepresentations. B, and

P, represent the same experimental Patterson map, equd)iatefines the SRF; iP; is an
experimental Patterson map adhe Patterson computed from the search model (atomic model
or electron density map), thef)(defines the CRF. The function for two different experiménta
Patterson maps can also be of practical interest to verdy tihio crystals contain identical
molecules or identical oligomers.

The RF is targeted at determining the relative orientatioihthe molecules but not their
relative positions. Therefore, the interatomic intrancalar vectors (self-vectors) contribute to
the useful signal in the RF, whereas all the interatomicrintdecular vectors (cross-vectors)
contribute to the noise. Fortunately for the RF performardieself-vectors from a spherical
molecule but less than half of the cross-vectors are shtiréer the diameter of the molecule.
Therefore, the radius of the spherical dombinis chosen to be approximately equal to the
diameter of a search model (CRF) or to the expected diam&tke @inknown molecule (SRF).
In practice the search model is not spherical and, moreitsdargest dimension can exceed the
length of one of the cell edges. Therefore, either twice #uius of gyration of the molecule
or half-length of the shortest crystallographic transkatithe smaller of the two magnitudes, is
substituted for the integration radius. If twice the radifigyyration is used, then most of the
meaningful information from self-vectors is preserved aodtributes to the signal, whereas
most of the noise owing to cross-vectors is suppressed. ififiieiposed by cell parameters
prevents accounting for the translational equivalenthefRatterson vectors, and, in particular,
prevents including any translational equivalent of thgiarpeak into the integration domain.

The contribution from the Patterson origin peak to the RHn®at constant for all rotations
for isotropic data, but this may not be so if the data are amipa, and it may disguise correct
RF peaks. The removal of a smaller sphere embracing thengpigsak from the integration
sphereJ in (1) or removal or downweighting of the low harmonics in the fagthelps resolve
this problem é.g. Navaza, 1987). Non-spherical integration domains we @icussed, but
this generalisation seems to be sensible only in the spe&sa of a strong prior knowledge of

the orientation.
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1.1.5 REF: reciprocal space formulation

Direct calculation of the RF according tb)for reasonably fine sampling of both Patterson map
and rotation space requires huge computer resources. RosstnBlow (1962) expressed the
RF in terms of intensities and the interference funct@, k), the Fourier transform of the

integration domain,
ZZ\H )? [F2(W)[? G(h, 0™t h). ()

to allow the following approximations. Firstly, only thetfeng terms”, i.e. the strong inten-
sities are preserved in one of the two sets of intensitiecor@#y, all but the first nodes of
G(h, k) are ignored to retain only close pairs of reflections in thetd® summation inZ). The
approximation was shown to be sufficiently accurate fortizacpurposes. The algorithm was
later enhanced by including more nodeszgh, k) in the summation and by more efficient sam-
pling of G(h, k) (Tollin & Rossmann, 1966; Tong & Rossmann, 1990). This atbor is rarely
used now because of the introduction of the fast RF algoritHimwever, the algorithms using
the reciprocal space formulations of the real space prablend adequate approximations for
G(h, k) remain of interest. In particular, such an approach is agple to NCS averaging to
offer iterative phase extension without re-calculatiorthaf electron density map at each cycle
(Chapmaret al,, 1992; Tsacet al,, 1992).

1.1.6 FastRF

The idea of the fast RF algorithm (Crowther, 1972) is thatRlag&erson function in a spherical
domain around the origin is expanded in series, in which tigeiar dependence is represented
by spherical harmonic¥y,, |
=Y cm(r)Ym(n) (3)
1=0 m=—I
In this equatiorcy, are radial functions, which only depend orthe length ofr, andn = r /r
is a unit vector along. Substitution of 8) into (1) and the orthogonality of spherical harmonics

result in the following expression for the RF,

ZZ Zc Dl (0) (4)

=0 m=—Inm'=
whereD!_, are the Wigner matrices representing the rotationterms of linear transformations

of spherical functions an@,,,, depend on the data,

a

Cmm - /Czﬁl)lm(r)c(z)lm’(r)rzdrv (5)
0
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a is the radius of the spherical integration domain, and thicés 1 and 2 in brackets cor-
respond to fixed and rotated Patterson functions, resgéctiihe Wigner matricef;)'mm are
computed using recursion relations. How the coefficié}flrln';:r are handled depends on the par-
ticular implementation. Crowther approximated the rafliactionsciy(r) by truncated Bessel-
Fourier series, expressed the coefficiantg of these series in terms of structure amplitudes and
summed the products 6fy;m, andc,)nyn Overn to evaluate the coefficienG#nm.

There were several improvements in the fast RF since it wesisifiiroduced by Crowther.
Navaza (1987) proposed using Gaussian quadrature foratig in ) instead of summation
of the products of Bessel-Fourier coefficients. This sifigdi the code and substantially im-
proved the accuracy without requiring extra computatidgimaé. “Linear” recursion instead of
“triangular” one (Navaza, 1990) improved the accuracy ofjiwéir function calculation. The
stability of the new recursion was especially importantdaiculation of Wigner functions with
largel and made fine details of the rotation function available fessary. Further improve-
ment of radial integrations) was achieved using expansion of the radial integral inerigs of
products of spherical Bessel-functions (different fronoWther’s series) allowing 30% higher
efficiency and on-the-fly accuracy control (Navaza, 1993).

The calculation of the coefficients,, (Crowther, 1972) or the coefficient,, (Navaza,
1993) factorising the integrab) is the most time consuming procedure in the standard MR
protocol with one model and one data set. However, if sewdata sets and several models are
available and the coefficients are pre-computed for theenstimmation of the Wigner function
series §) will be required for each combination of data set and moddlwill in total take most
of the computational time. The use of the three-dimensifastl Fourier transform instead of
a two-dimensional one (Kovacs & Wriggers, 2002; Trapani &, 2006) accelerates this
step by about an order of magnitude in a typical MR problemaddition, such an approach
resolves singularities that occur in the recursion for Wigfunctions at special values ¢f
Alternatively, the RF can be sampled on sparser grids ifetaee defined specifically for each

(-section according to the angular resolution limit (Trapatral., 2007).

1.1.7 Real space RF and direct RF

In the real-space RF (Huber, 1965) the RF is computed djyreattording to definition k),
but the integration is approximated by summation over ohs gtrongest grid points of the
model Patterson function. This approach is very similah& by (Nordman & Nakatsu, 1963).
Alternatively, the orientations can be scored accordingpéomatch between the coordinates of
strongest peaks in the rotated and fixed Patterson n@ykKONE Alvarez-Ruaet al., 2000;
Borgeet al., 2000).
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In the direct RF (Briinger, 1992) the model in each of thestkstientations is placed inRil
unit cell with the same dimensions as the unit cell of theahogystal. The Patterson function
of the model structure can therefore be directly compardh thie observed Patterson without
restricting the integration domain. This is especially artpnt if the unit cell dimensions are
very different or the shape of the model is far from spherictilis also important that the
correspondence between two sets of intensities is cleafigetl and therefore a more adequate
target function than the simple overlap function can be usedgarticular, the target function
in the direct RF is the “Patterson correlation” (PC), theeéin correlation coefficient between
two sets of normalised intensities. The use of all self-wegtthe PC-target and absence of
any approximations are the factors enabling very high eshtin the direct RF compared to
other variations of the RF (DeLano & Briinger, 1995; Groksstleve & Adams, 2001), which

compensates for the high computational cost in difficult MBglems.

1.1.8 Translation function

The “modified minimum-function” by Nordman & Nakatsu (196@)hich was an equivalent of
the TF with the atomic search model, was expressed in terrasoi over all expected cross-
vectors. A similar algorithm was proposed by Tollin (1966)ywhich the TF was considered as
a modification of the sum function by Buerger (1959). CrowtteBlow (1967) presented an
algorithm where summation over cross-vectors was avoidéedtze Fourier coefficients of the
TF were expressed in terms of calculated intensifiefufiction). Such formulation made the
TF suitable for the solution of macromolecular structutegas also shown that the removal of
the expected self-vectors from the experimental Pattefigsaction enhances the contra3ti¢
function). Symmetrised versions ®F and T 1-functions were proposed 2-function), which
revealed peaks from all pairs of symmetry related molecbleisin different positions and there-
fore without increase in contrast.

Later, several improvements of TF were proposed.(Langs, 1975; Litvin, 1977). Major
improvements were independently introduced by Haeddh (1981) and Vagin (1983) to render
TF essentially in its present appearance. In the new verdidifr all pairs of symmetry related
molecules act in accord and peak at the same point of threerdiional TF-space to increase
the signal-to-noise ratio in higher symmetry space groups.

The TF by Haradat al. (1981) is computed using the fast Fourier transform (FFJ an
approximates the correlation coefficient. In the progBRUTE Fujinaga & Read (1987) use
exact centred correlation coefficient of intensities. Thisction is computed for each sample
point in the TF-space. FFT formulation of such correlati@arsh results in a considerable

saving in computation time (Navaza & Vernoslova, 1995).
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Another overlap function, although based on a quite diffephysical approach, is the full-
symmetry phased translation function (Cygler & DesrochE®89). Its reciprocal-space version
(Bentley & Houdusse, 1992) is computationally similar te i, although the TF is quadratic
in the intensities, whereas the phased translation fum¢ed F) is quadratic in the amplitudes.
In the case of two molecules in the unit cell this functiondsigalent to the search of one ori-
entation in the difference map calculated from the othesrdation. However, a more important
application of the PTF is to locate a model given externabpeaSuch combination of MR and
experimental phasing proved to be successful in the casksvdiomology models and poor

experimental phases, when none of the methods alone sectcégiokopytowet al.,, 2005).

1.1.9 Packing function

The TF defined as the overlap of two Patterson functieng. (TOfunction by Harada et al.,
1981) linearly depends on the density overlap between timer®try related copies of the search
model and quadratically on the signal, the overlap betwearch and target densities. Given a
search model with low similarity the top peaks of such a THaost likely to correspond to the
overlap of the symmetry related copies of the search modehdt to the correct solution.

There are several ways of correcting the TF to eliminate @mieeight these false peaks.
Both the sum of calculated intensities and the sum of caledlantensities squared depend
on the model overlap. The first magnitude and the square fabececond magnitude enter
the denominators of the modified TF by Harastaal. (1981) and the TF defined as the cor-
relation coefficient between observed and calculated $ities (Navaza & Vernoslova, 1995),
respectively, to downweight the translation vectors apoading to the interpenetration of the
symmetry-related copies of the search model (Zhang & Matthd994). The sum of calcu-
lated intensities is the height of the origin peak of the étatin function. Thus, one of the
subtraction strategies in the MR is the removal of the orjgiiak of the observed Patterson
function, which simultaneously eliminates contributianthe TF from the origin peak of the
model Patterson map and therefore substantially redueesffibct of the model overlap. The
intensity-correlation search appears to be the most efficimong the FFT-based translation
searches, but it is about one order of magnitude slower thzrsy It is therefore a common
practice to avoid the global correlation search but to dateuthe correlation coefficient for the
top peaks of a faster version of the TF, as is done, for exgrimpfeVioReandMOLRER

None of the discussed modifications of the TF is guaranteeshtove the false peaks owing
to the overlaps in the model. The packing function (PF; Vat®83; Stubbs & Huber, 1991; Va-
gin & Teplyakov, 1997) provides a straightforward way ofadisding such false peaks. In this

method, the density overlap in the model is computed as difumof the translation vector and

23



then inverted and truncated to give the PF, which equals anthé position of the reference
search molecule giving no overlaps between symmetry elgmitsaand equals zero for maximal
overlap of two symmetry equivalents. The overlap functioocants for all symmetry equiva-
lents and is computed using FFT. An empirical scaling cdefitcand threshold are required for
the conversion of the overlap function into the PF. The TF idtiplied by the PF to generate a
modified TF, in which the false peaks owing to overlaps in tloglah are suppressed.

Usually, residues on the surface of biomolecules are lessetwved than those buried inside
it. Moreover, the conformations of exposed loops not only loa different in homologues, but
can vary in different crystal forms of the same protein, esdly in the areas of intermolecular
contacts. Therefore it is necessary to allow some overlapdsan neighbouring molecules in an
MR solution. INMOLREPthis is achieved by using two different models, one for dalibon of
RF and TF and another for the packing function (Lebeeteal., 2008). In the latter the atoms

with non-zero accessible surface are removed.

1.1.10 Combination of MR and experimental phasing

Multiple-wavelength anomalous diffraction (MAD) or mydte isomorphous replacement (MIR)
data are frequently used for validation of the MR solutionl @hase improvement. Anoma-
lous/isomorphous substructures with multiple or pastiacupied sites are difficult to solve,
but they can easily be found in difference Fourier synthaesisg MR phases, thus confirming
the correctness of the MR solution. Experimental phasebednrther used to improve poor es-
timates of phases provided by MR (Czjzetkal,, 2001). Schuermann & Tanner (2003) proposed
that anomalous differences from S atoms should routinelgdiiected and used in MR struc-
ture determination. An interesting method is described byi@ger et al. (2004), in which the
correctness of the MR solution was verified by identifyindiagion-damage-induced structural
changes.

Moreover, there are several formulations of the TF whiclisetithe difference data during
the TF search. For example, the experimental phases camdmhdiused in the PTF, or the
difference electron density can be monitored at known hleagmalous atom sites (Zhang &
Matthews, 1994). In addition, the Patterson search foryhetams can itself be reformulated
in terms of the TF (Vagin & Teplyakov, 1998). In special cagEkigh symmetry oligomers the
MR approach to substructure determination is superior theeotherwise more powerful direct
methods §2.6, Antsonet al., 1995).
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1.1.11 Improvement of the search model

More attention is recently paid to search model design Isecafi rapid growth of structural
databases and better understanding of the nature of salegariability. In addition, modern
computers make it possible to test many search models ar éhsembles and an effective
ranking of these models becomes a priorRhéser McCoy et al.,, 2007).

Model preparation typically includes searching for hongolos structures in the protein data
bank (PDB; Bermart al, 2002), their analysis and modification. The informatiompartant
for MR includes the presence and conservation of the oligians¢éate and domain structure in
the family of homologous proteins. Data on oligomers canliiained fromPISA(Krissinel &
Henrick, 2005) and domain descriptions are given, for exanfyy SCOP(Murzin et al.,, 1995),
which is linked to the PDB web resources. This informatioombined with analysis of the
SRF, Patterson map, unit-cell parameters and symmetnedfrilstal, allows the generation of
a search model or a series of search models, including oégansingle subunits or domains.
There is a wide range of tools available for modification & felected model(s). Schwarzen-
bacheret al. (2004) showed that the side-chain modelling according rgetasequence has a
significant impact on MR success rates. Such a model modlificatas implemented in the
CHAINSAWprogram, written by Norman Stein and included in the CCP&edi@ollaborative
Computational Project, Number 4, 1994). A three-dimerdicuperposition of homologous
structures using, for exampl8SM(Krissinel & Henrick, 2004) integrated iG@oot (Emsley &
Cowtan, 2004) allows the identification of polypeptide segts that are variable within the
given family of proteins. The removal of such segments framdearch model can often prove
critical for the MR search. More extensive modifications stimes help to solve difficult MR
cases. These include homology modelling (Schwetdd., 2003; Fiser & Sali, 2003) and scan-
ning the possible conformations of the unknown protein gisiormal-mode analysis (NMA;
Suhre & Sanejouand, 2004).

Some of the advanced MR protocols cannot be clearly suledividto a model preparation
stage and a purely crystallographic stage (Pattersontgeas a partial structure is improved
using X-ray data and a better search model for subsequentisaef Patterson search is pro-
duced.

For example, if there are many identical molecules in themasgtric unit, it is not necessar-
ily the case that all of them produce an equally good contratste RF and TF. The molecules
with lower B-values, or those in favourable positions (e.g. makingeclosntacts with their
symmetry mates) give higher contrast than others. Theréfdrequently happens that the first
few subunits are found easily, but the rest of the structemeains unidentified. In the example
described by Shaaet al. (2005), the dimer formed by the first two subunits found wasdu®
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find the remaining two dimers. A similar approach was usedZho(l & Gong, 2004). This
strategy is implemented MOLRER which outputs the coordinates of a dimer once it is gener-
ated by previously placed search models. In addition, tlaive positions of located subunits
or domains can be refined RIL prior to the translation search (Yeates & Rini, 1990, see al
§2.4). In some cases, especially with high-resolution datdaivia@, the restrained refinement of
a partial structure can lead to determination of the corag#aucture §2.5).

The failure of the first MR attempt can be due to conformatiatifierences between the
search model and the target molecule. These differencefsezprently be described by domain
mobility. In such cases the crystal structure can be sohgdguseparate domains as search
models. Also, prediction of conformational changes usingA\has been shown to be suc-
cessful (Suhre & Sanejouand, 2004). An interesting apidiceof NMA to the solution of a
multidomain structure was reported by Je@at@l. (2006). In this work the modification of the
search model using NMA was guided by CRF peaks from indididoanains.

Contemporary automated MR programs offer several buithodel-preparation function-
alities. The integration of model-preparation and Padtersuperposition techniques in one
program has several advantages. Apart from conveniench,istegration allows specific ad-
justment of the model-modification parameters for an efficRatterson search. Moreover, the
weighting parameters for the RF and TF are more reliableey #ire derived from the original
sequence and atomic coordinates of the homologous praté®l.REPwas the first program
implementing such an integrated approach, which had prtavére efficient and has recently
been implemented in several MR pipelines includBLBES(Long et al., 2008), MrBUMP
(Keegan & Winn, 2008) andSCG(Schwarzenbachest al., 2008).

1.1.12 The use of NCS in MR

Although the expectation of the 1960’s of directly using Nf6Sphasing was not fulfilled, the
methods utilising the NCS are an important ingredient oftemporary crystallographic soft-
ware. In many cases the orders and directions of NCS axesecdetérmined from diffraction
data using the SRF. Translational NCS can be detected usingative Patterson synthesis. A
comparison of experimental functions and functions gaedr&rom MR solutions is a good
validation tool. Two of many examples are given by Maketoal. (2009) and Keillor et al.
(2003).

The locked rotation function (LRF) and locked translationdtion (LTF) were developed
to build an oligomer from subunits in accordance with the §Rbhg, 2001). The resulting
oligomer is used in a conventional TF search. NCS analysigdnae performed with special
care when NCS is used directly for structure determinatamiii the LRF/LTF method). An
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example of misleading SRF was, for example, reported bydsiogl. (2003).

The point-group symmetry of an oligomer is an approximatarsgtry and its deviation
from the exact symmetry may be too large for methods basedr@maging of the Patterson
function (LRF/LTF) to be successful. The selection of theFgieaks obeying NCSCRANS
Lilien et al, 2004) is free of this disadvantage. An interesting examiplevhich selection
criterion was based on the electron-microscopy reconstruof a trimer was presented by
Trapaniet al. (2006). A technique in which no restrictions are imposedtandrganisation of

the oligomer is the multi-copy search (Vagin & Teplyakovp@Dimplemented iMOLRER

1.1.13 Exhaustive search

Conventional three-dimensional implementations of Psdiesuperposition methods suffer from
a low signal-to-noise ratio at the rotation-search step.eRmaustive six-dimensional search at
low resolution enhanced by multi-start local optimisategainst all datagOMoRe Jamrog

et al, 2003) or six-dimensional stochastic optimisation emiplgy for example, evolutionary
programming EPMR Kissingeret al., 1999) partially overcome this problem. Moreover, a
stochastic approach proved to be successful in solving @irBdnsional MR problemQ@ueen

of Spades Glykos & Kokkinidis, 2003). These methods are especialgvant in cases of low
solvent content (Nakadt al., 2003).

As a variation of a six-dimensional search, the TF searclbeatonducted for a comprehen-
sive sample of orientations of the search model (Shetiffl., 1999). In general, an exhaustive
search over some parameters of the model can be combinedomtentional MR. For exam-
ple, a one-parameter family of hexamers generated from alogous trimer was tested by
conventional MR (Leonaret al, 2006, §2.3); all possible orientations of the idealised trans-
membrane helices forming symmetric helical bundles wenegged and used in an MR search
(Stropet al., 2007).

In general, in the presence of NCS in the target crystal,hidadility of a related oligomeric
search model makes it possible to reduce the number of diorensf the search space. As
a result, the orientations (and in some cases the intermahyaers) of the oligomer can be
scanned by a systematic exhaustive search using a TF an&R&et€p can therefore be omitted.
Three examples of successful structure solution using a8-bléhstrained exhaustive search

were reported in Isupov & Lebedev (2008).

1.1.14 Related methods

There are several other lines along which model-based mpatsvelops. Envelopes derived

from electron microscopy (EM) reconstruction or small @ggattering can be in principle lo-
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cated in the unknown crystal structure and phases from thelage can be extended to higher
resolution (Hao, 2006). Note that the MR search at low rd&wius fast and thus an exhaus-
tive six dimensional search becomes possible @tial, 2003). Phased rotation, conformation
and translation function was designed for automatic imétgion of electron density utilising

molecular fragments with some conformational freed®T; Pavelcik, 2006).

1.1.15 MR and translational NCS

Crystal structures containing many independent moledulése asymmetric unit are, in gen-
eral, difficult to solve using a sequence of MR searches, e®tls a significant decrease in
signal-to-noise ratio for an incomplete model. Even in aale case, a correct solution does
not necessarily show as the top score in each of the congearie-body searches and there-
fore sophisticated combinatorial algorithms and extensaiculations may be requireBi{aser
McCoy et al.,, 2007).

The use of LRF/LTF{1.1.12 for oligomers with known point group symmetry substan-
tially reduces the number of required searches and comespgly increases the signal-to-noise
ratio in each search. Another special case, in which a remugt the number of searches is
possible, is translational NCS. The structure factors feosingle molecule and from several
molecules in the same orientation differ by a coefficient trdy depends on the relative posi-
tions of the molecules and the reflection indices. The radgibsitions can be determined from
strong non-origin peaks in the Patterson map. Thereforénarmmodification of the TF allows
simultaneous search for two or more molecules (Nawtzal, 1998). The efficiency of this
method is affected by small differences in the orientatiofihe NCS-related molecules. How-
ever, the dispersion of the orientations can be estimaiedtprthe TF search and accounted for
in the weighting scheme during the TF search, as implementBtiaser

An even more specialised case is that of translational mssunametry where the NCS trans-
lations are near simple fractions of the crystallographanglations. In these cases some zones
of reciprocal space are much weaker than others, and theaksyicture is very close to one
with a smaller unit cell. These structures are customadlyesl in the smaller cell and then the
solution is expanded to the true cell. Navatal. (1998) discuss several examples, including the
crystal structure of ribonuclease Barnase fi@atillus amyloliquefacienéGuillet et al.,, 1993)
with eight-fold translational pseudosymmetry. It was destmted that such structures are solv-
able by either of the two techniques, the simultaneous kdardranslational-pseudosymmetry
related molecules or the search in the smaller cell. Thedommethod may seem more attrac-
tive as it uses in the TF search the whole data set includiagublattices of weak reflections.

However, the multi-model is unlikely to be sufficiently pige to reasonably match the weak
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intensities because of both inaccuracy of the NCS-translaector derived from the Patterson
function and the small differences in the orientations effieeudotranslation-related molecules.

In both structure determination strategies, the adjustroethe model to fit the weak re-
flections is in effect postponed till the refinement stage.effitient approach to refinement in
the presence of translational pseudosymmetry is presépt€ksaneret al. (2006). The first
step of the procedure includes rigid body refinements agtiessublattice of weak intensities
alternated with restrained refinements against the sidalatf strong intensities. The second
step is restrained refinement against all data. In such alheagroblem with relative weighting
of weak and strong intensities is avoided to acceleratedheergence.

The presence of translational pseudosymmetry not onlyinesjgpecific search and refine-
ment protocols, but also imposes additional problems whighspace group assignment. It was
likely that theP2; solution found by Oksaneet al. (2006) was a false origin solutio§4) and
therefore did not refine. As a result the corr®@ symmetry was disregarded and incorrect
P1 symmetry was assigned to the structure. Another kind ofakeés made and corrected, was
reported by Makinet al. (2007). Thec-dimension of the unit cell in two trigonal polymorphs of
Bence Jones protein differed by a factor of two and belongéie space groud®3,21 (c = 47
A) andP3;21 c = 94 ,&). The largee structure was solved first and the same space group was
erroneously assumed for the smabtructure, which led the authors to report the likelihood of
twinning in the smalle form (Makinoet al,, 2005). Note that in this case the pseudosymmetry
space group also included the six-fold rotation compliathe analysis of twinning. A method
and a program for validation and correction of the spacepessignment for general cases of

pseudosymmetry and twinning were developed and are pesbanthis thesis§é.3).
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1.2 NCS and twinning
1.2.1 Geometrical classification of twins

The ordered intergrowth of crystals is a phenomenon aburidarature and widely used in in-
dustry. The mutual orientation of the individual crystasiefined by structural similarity and,
in particular, dimensional similarity of the unit cells dfetintergrown crystals. In such edifices,
the composition plane, an interface between individuastadg has two-dimensional transla-
tional symmetry that ensures larger energy gain comparadandom interface. In this context,
the terms reticular control or lattice control of orientatiare used. Distinction is typically made
between two- and three-dimensional lattice controls. dfititergrown crystals belong to differ-
ent species (phases), the phenomenon of their definite frrieatation with two- and three
dimensional control is called epitaxy and syntaxy, redpelgt (Bailey et al,, 1977). In syntacic
intergrowth, the composition surface can in principle berfed by any pair of corresponding
planes of the two individual crystals. However, the streadtunature of the three-dimensional
control is still two-dimensional, as the mutual orientatiof individual crystals is unambigu-
ously defined by any one of possible interface types and,dnotjge, one type of interface pre-
vails and define the joint growth of the adjacent individugistals in the respective orientations
(Bonev, 1972).

A special case of oriented crystal intergrowth, twinnirggam association of individual crys-
tals of the same phase in different relative orientationsy #wo individual crystals of a twin are
internally identical and symmetry related (by the twin @iiem) and it is therefore natural that
emphasis is put on symmetry relations in the descriptiowofd. The dimensional similarity
is now the similarity between the lattice and its rotated aron copy, and the reticular control
of the orientation translates into the law of Mallard stgtthat the twin axis in a rotation twin
exactly coincides with the direction of a certain latticevrar is exactly perpendicular to a lattice
plane, and the twin plane in a mirror twin is exactly paraite& lattice plane (Le Page, 2002).

The importance of symmetry in the description of twins isentided by the high frequency
of twins with merohedry-holohedry relation between thenpsymmetry of the crystal and that
of the crystal lattice. A symmetry operation missing in therahedral point group of the crystal
but present in corresponding holohedral group (of thecklttis a potential twinning operation.
For twins generated by such an operation the lattices ofiohatl crystals in their twin orienta-
tions exactly coincide.

For twins by pseudomerohedry the twin operation does notiggio the holohedral group of
the crystal and, in general, the symmetry relation betwkerndividual lattices is approximate.
The mismatch between the lattice and its transformed coplgdsacterised by an obliquity an-

gle,w. In the case of a rotation twin the obliquity angle is definedhe angle between the plane
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perpendicular to the twin axis, which is in general nonenaai, and the closest crystallographic
plane. In the case of a mirror twin the obliquity angle is thgla between (non-rational) axis
perpendicular to the twin plane and the crystallographiedation closest to it.

In the more general case, twinning by reticular (pseudo)hrery, the twin operation (ap-
proximately) matches a sublattice of an individual crystad its rotated or mirror copy, but not
the whole lattice. An additional parameter characterisiagh a twin is the twin inder. This
integer number equals the number of all lattice nodes divigethe number of nodes overlap-
ping under the action of twin operation. The particular cafseasen = 1 is not included, as it
corresponds to twinning by (pseudo)merohedry.

Two macromolecular twins by reticular pseudomerohedndaeussed in this thesis. These
are the PDB entries 1lbs (sixth exampléin3.4 see also the end &£2.5 and 2w11l. The latter
case is discussed in detail 35 and, in particular, the calculation of twin index and obitgu
angle for this twin are given i8.5.4

The only physical constraint on the twin lattice (an appmwadely invariant sublattice of
the individual lattice) is that imposed by dimensional $miy of the lattices at the compo-
sition plane. This condition alone does not impose any requént on the three-dimensional
symmetry of the twin lattice, exact or approximate. The uskattice-pseudosymmetry-based
description of twinning might therefore seem unnaturalentnot for an empirical observation
of statistical nature that a large obliquity angle and twidex are unfavourable for the occur-
rence of a twin. Le Page (2002) suggests an upper limit of @ixHe twin index and of six
degrees for obliquity angle, although twins with excepdiibnhigh index are known (Hahn &
Klapper, 2003, see alg3.5).

The effect of twin lattice symmetry on the diffraction pattef twinned crystals is empha-
sised in a coarser classification (Giacovaet@l, 1992), in which TLS-twins are opposed to
TLQS-twins, and TLS and TLQS stand for twin-lattice symmietnd twin-lattice quasisymme-
try, respectively. Accordingly, TLS twins include twins Inyerohedry and twins by reticular
merohedry, in which the reflections from two individual dels overlap exactly in everg-th
plane of the reciprocal space {s the twin index) and TLQS twins include twins by pseu-
domerohedry and reticular pseudomerohedry, in which teglap in everyn-th plane is partial.
However, it makes sense to distinguish between 1 andn > 1 as the former case entails more
problems for structure solution and refinement and theedfos previously described classifica-
tion by Friedel (1926) is typically used in macromolecularstallography.

A finer symmetry-based classification is proposed by Nes@dterraris (2004). In particu-
lar, the distinction is made between twins by pseudomemyheih zero and non-zero obliquity
angle. The former case is characterised by an exact (wikgaranental error) accidental met-

ric symmetry and is therefore termed as twinning by metricahedry (see also Flack, 1987).
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In fact, this definition is structurally justified as it apgsito a special morphology of twinned
crystals in which the very presence of twinning implies éXattice symmetry relative to a twin
operation, which does not belong to the holohedry of thetaly§3.3, §3.4). Of course, the
constraints on unit cell parameters are not a consequenwérwfing, but of certain structural
features of individual crystals, which are only emphasisgthe presence of twinning by metric
merohedry.

The geometrical (twin-lattice symmetry) classificatiortwins emphasises the most general
features of a given twin and imposes restrictions on its iptessnorphology. However the
definition of twinning becomes vague in special cases ofisipgase morphologies. Millward
et al.(1983) describe an oriented intergrowth of two individugistals of the same phase related
by 9 rotation, in which the composition plane is parallel to tB&@)-plane of one individual
crystal and to the (001)-plane of the other, the two crysgiphic planes being independent
relative to the crystal symmetry. This intergrowth is a tiiiom the point of view of lattice
symmetry, but it was not recognised as a true twin from thetpaf view of its morphology
owing to the lack of chemical integrity at the compositioan#. In this case the composition
plane is not symmetric relative to any of the potential twmiei@ations and this might be another

argument for avoiding the term twin.

1.2.2 Determination of approximate lattice symmetries

The geometrical analysis of the lattice is neverthelesBcgerit for the majority of structural
studies, in which the structure of an individual crystalfignterest and twinning is an unwanted
factor which must be taken into account to avoid gross eifrotise structure determination and
refinement. In such studies no distinction is needed betweeming and, for example, the
intergrowth of two individual crystals in twin orientatisras in the above example by Millward
et al. (1983).

Given the X-ray data for a single lattice, the detection ahtwng starts from prediction
of possible twin operations from the unit cell parameterd toe point symmetry of the data.
Le Page (2002) proposed an algorithm applicable for a genasa of twinning by (reticular)
(pseudo)merohedry. A more specialised technique for iigérd data sets where the unit-cell
parameters and space group can allow twinning by (pseudoléry and finding the possible
twin operations is described by Flack (1987).

Twinning by reticular (pseudo)merohedry can usually bediehin the later stages of the
structure refinement. It can be deduced from the presencemsbrigin peaks in the Patterson
map, which are not accounted for by translational N§G&5). In a more regular approach,

possible twinning laws and associated peaks in the Pattensp (or modulation of intensities)
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owing to partial overlap of reflections can be predicted fthmunit cell parameters, and the hy-
pothesised twinning laws can be accepted or rejected basbeio presence in the experimental
data.

Twinning by merohedry, metric merohedry or pseudomerghedth small obliquity an-
gle is the most unfavourable case for structure deternainatin the first two cases a complete
overlap of twin related reflections occurs, and in the thaidecthe intensities of partially over-
lapped reflections are likely to be jointly integrated dgrthe processing of diffraction images.
In a frequent case of approximately equal volumes of indigidcrystals (perfect twinning),
the apparent symmetry of the data is higher than the trug goinip symmetry of the individ-
ual crystals and therefore wrong symmetry assignment isilplesthat results in problems with
the structure determination. Similarly to twinning by cefliar (pseudo)merohedry, the detec-
tion of twinning by (pseudo)merohedry includes lattice ayetry analysis to predict possible
twin operation(s) and data analysis to test the predictibmgontrast to twinning by reticular
(pseudo)merohedry, twinning by (pseudo)merohedry doegnoaluce an alternative lattice(s)
and does not cause the modulation of intensities, whichdcbeldetected based on the mean
values of intensities in a series of parallel planes in mecial space. Therefore several twin tests

were developed that utilise statistics that are finer thaamietensity.

1.2.3 Perfect twinning test

For the rest of this section, the term twinning means twigrig (pseudo)merohedry with two
individual crystals (twinning by hemihedry) and the crysfucture is assumed to be non-
centrosymmetric, the case relevant to macromoleculatattygraphy.

Given an X-ray data set, the three following questions eelab twinning are to be answered.
(i) Are the X-ray data twinned? If so, (ii) what is the twingiriraction «, the relative size of
smaller twin domain, and (iii) what is the true symmetry ofiagividual crystal?

Let assume that the data are “ideal”, that is, the experiahartor can be neglected and
the structure factors of the twin-related reflections arecoorelated. In this case, the first two
guestions and, provisionally, the third question may bevansd using the method proposed
by Rees (1980), in which the experimental distributions @hmalised intensities are compared
with the theoretical distributions derived from the Wilsdistribution (Wilson, 1949).

Rees derived a simple analytical expression for the cuimaaldistribution of the normalised

intensityZ for acentric reflections and variable twinning fraction

N (1—«)exp (—11%_0622 —aexp (—2) | ©

and used numerical integration to tabulate such a distoibbdor centric reflections. (The latter
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distribution can be expressed in terms of a hypergeomeiriction.)

Acentric intensities constitute a majority of macromolecuX-ray data. Comparison of
experimental and theoretical acentric distributions wlevan answer to questions (i) and (ii).
Rees underlines that determination of the twinning fractioes not require knowledge of the
active twin operation. However, in a robust implementatifrihe test, all the potential twin
operations still need to be known, as all the reflections wwaild have special distribution, if
any of the potential twin operations were active, need sphéaatment.

For answering only question (i), it is sufficient to compahne experimental curve with
limiting cases of the distributions, fer = 0 anda = 1/2. In these limiting cases, there are

simple analytical expressions for both kinds of reflecticantric,

P(Z|o = 0) = erf(\/%) = \/g fexp(— 4—22>d§’ (7

P(Zla=1) =1—exp(-2)

and acentric,
P(Zla =0) = 1—exp(—2Z)
. (8)
P(Zla=3)=1—(1+2Z)exp—2Z)

Rees notes that the distributions for twinned centric réflas and for untwinned acentric
reflections coincide. The nature of this coincidence besoctear if the distributionss) and @)
are rewritten in terms of chi-squared distributions. Fartde reflections

Z~xi  (a=0)
9)

Z~3 (a=3)

and for acentric reflections

Z~3x5  (a=0)

(10)

Zro3xg  (a=3)
These equations become obvious after the following coreid®. The real and imaginary
parts of the acentric structure factérandB, as well as the centric structure factor without the
phase multiplierC are normally distributed with zero mean. Therefore, thevimied centric
intensity, C? is the square of the normally distributed random variable peffectly twinned
centric intensity is a sum of intensities of two individuaystals,C? + C3 and an untwinned
acentric intensity is the sum of the real and imaginary psgtsared A% + B2, both intensities
being sums of squares of two normally distributed indepehdendom variables. Finally, the
twinned acentric intensity is the sum of four normal varesquaredd? + B2 + A3 + B3. Thus,
normalised intensities in untwinned and twinned centrisesaand in untwinned and twinned

acentric cases are distributed as chi-squared with one,ttmmand four degrees of freedom
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divided by the number of degrees of freedom. This consiagratan be continued to assign
a chi-squared distribution with three and six degrees cefdben,xg/3 andxg/G to perfectly
twinned centric and acentric reflections of ternary tveit,

In addition, there are “apparent” centric reflections ledan the plane orthogonal to a twin
two-fold axis (Luninet al,, 2007). If the twin axis were crystallographic, these reites would
be centric. Intensities of the twin mates located in suctaaghre equal, therefore independent
of twinning fraction and distributed ag, as if they were perfectly twinned centric intensities.
On the other hand, the distribution of the true centric isties in a partial twin is intermediate
betweenxf andxg. Therefore, given, for example, a partial twin w21 individual crystals,
Pmmmlattice and twin two-fold axes along andc, the true point group can in principle be
identified through the analysis of intensity distributianghree planes, i, hOl andhk0. This
method should however be avoided, as only a small fractiail oéflections is analysed. More-
over, this method is invalid in the case of OD-twi§4.@), which represent a significant fraction
of macromolecular twins and in which the distribution ofwimned intensities in the planes of
interest may differ fromy3.

The similarity of the perfectly twinned distributions fauge centric reflections and “appar-
ent” centric reflections gives a technical advantage in #ese ®f using intensity statistics for
answering question (i) only, for detection of twinning. Terfectly twinned data are generated
from partially twinned data by averaging the intensitiesvaifi mates and rejecting reflections,
for which any one of the twin mates is not measured. Refles@we subdivided into acentric and
centric relative to the point group of the averaged data amdesponding cumulative intensity
distributions are compared with the reference distrimgior« = 0 anda = 1/2 only. This
version of the perfect twinning test treats the centric o#ib@s in a robust manner. However,
it nullifies one of the advantages of the original implem#ata which uses all measurements
regardless of whether all twin mates of a given reflectiomagasured or not.

The second moments of the normalised intensities are atb fos detection of twinning
and estimation of twinning fraction (Giacovazebal,, 1992). Under the same assumptions as
above, the second moments equal 3.0 and 2.0 for untwinnegexfectly twinned centric re-
flections, respectively, and 2.0 and 1.5 for untwinned amtep#y twinned acentric reflections.
These values can be directly obtained frafpgnd @) or from the corresponding normal distri-
butions. The second moments may be significantly distoryealiliers and experimental errors
and therefore they are typically represented as a functiceswlution. The second moment
is mainly defined by the right tail of the intensity distritmrt (strong intensities). In this con-
text, the cumulative intensity distribution is typicallxamined for relatively weak reflections
to provide complementary information to the moment testotAar important use of the plot

of second moments (for acentric reflectias) resolution is to find the resolution range where
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the second moment is approximately constant and therdfereumulative distribution test is
justified.

Rees emphasises that the distributions for twinned irtieasare valid only if structure fac-
tors related by twin operation are not correlated. He prewidn example in which the twin
axis is approximately parallel to the NCS axis (such casesuather referred to as interference
between NCS and twinning) and shows that the use of only higiselution shells for the twin-
ning test restores the theoretical distributions. Thisaffs explained by some asymmetry of
NCS-related molecules relative to the twin operation. Hsigmmetry decreases the correlation
between twin-related structure factors with increase sfltdion. In contrast, the relative exper-
imental errors are higher at higher resolution, where thepduce larger systematic distortions
into the theoretical distributions. Even if there were neteynatic errors from the detector or
data integration, the distribution of observed intensitiould deviate from the distribution of
“exact” intensities because of the Poisson distributioguaintum counts. The resolution range
in which the experimental distributions well match the tiegical distributions can therefore be
very narrow or even absent.

The following numerical experiment illustrates the effetinterfering NCS on the perfect
twinning test. The 1ilj X-ray data set represents an untadnecrystal with pseudosymmetry.
The space group and pseudosymmetry space group2aPe2; andP432,2, respectively. The
r.m.s.d. between the true structure and its symmetrisey isoabout 0.25. A data set with
perfect twinning was simulated from the original untwinmeda. The experimental second mo-
ment of Z against resolution and the cumulative distributionZodre shown in Figl.1 The
experimental curves for the original untwinned data setmtteoretical predictions (Figs.la
and1.1b); however, this is not so for the simulated data set, whexel#@viation from the theo-
retical curves for untwinned data is much less than expeateddoes not match the theoretical
predictions for a perfect twin (Fig&.1cand1.1d). In twins with as strong pseudosymmetry asin
this example, the effect of NCS on the cumulative distritutextends to very high resolutions.
It can be expected that the closer the NCS operation is to aratipn of higher point group, the
less contrast there is between the results of perfect tmgntasts with untwinned and twinned
data. In the limit, the NCS becomes crystallographic synynéie twin operation becomes
an element of the point group symmetry of the untwinned etysbd untwinned cumulative
distributions of intensities are restored. This lack oftcast creates difficulties for diagnostics.
Fortunately, crystal structures with strong pseudosymyreetn frequently be solved and refined
as a first approximation in a higher symmetry space groug)essttucture can be resolved later
and further refined in the correct space grot#h.4). In this scenario the determination of the
exact space group is postponed and there could be a probkbnth@icompleteness of data if it

would become necessary to reprocess them later in a lowensymy point group.
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Figure 1.1. Effect of NCS on perfect twinning tests if the NCS and twinsaa&ee approximately parallel.
The plots were drawn using X-ray data from PDB entry 1ilj (@beecet al., 2001).

Plots @) and @) are for the original datacf and () for data with simulated hemihedral twinning.
Plots @) and €) show the cumulative distributions & and p) and @) show the second moment @f

for acentric reflections against resolution.

The cumulative distribution plots show

(i) The top thin black line is the theoretical distributicor ftentric untwinned data; the central line is the
distribution for both acentric untwinned data, and cenpecfectly hemihedrally twinned data; and the
bottom line shows the theoretical distribution for acenpréerfectly hemihedrally twinned data.

(if) The thick blue and red lines present observed or sinedlalata and show distributions for centric and

acentric reflections, respectively.

The second moment plots show

(iii) The thin black lines show theoretical moments for ummed acentric reflections (top line) and
perfectly hemihedrally twinned acentric reflections (bot)

(iv) The red line corresponds to the observed or simulatedtaic data.
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The effect of experimental errors on the cumulative disti@n is hard to predict. In the first
example (Figl.2) the experimental cumulative distribution Bffor acentric reflections clearly
indicates twinning with a high-resolution cut-off at 187 In contrast, the same test but with all
data is misleading and the experimental curves are closetiheoretical curves for untwinned
crystals. The high-resolution limit of 1Xwas chosen becaugestandard s (F))/(F) started
growing and the second momentdfor acentric reflections started changing at about this res-
olution. (The required plots dr-standard and second momentdfagainst resolution were
obtained usingFCHECKand TRUNCATE respectively.) The two criteria correlate demon-
strating that the misleading behaviour of the cumulatiaritiution test is caused by the exper-
imental errors or during the merging of weak intensitieswideer, these “visual” rules are quite
subjective. The use of an upper limit fiBfrstandard is another option. In this particular example
R-standard was approximately 0.07 at the cut-off resolutidocording to my experience this
threshold value works in most cases. However, the low réisalgut-off, which was applied to
keep high completeness in the tested range, was not ciititiails case.

The second example (Fig.3) is the untwinned data set for a crystal of human deoxycyti-
dine kinase belonging tB432,2 space group (Elisabetta Sabini, personal communicatidrg
behaviour of the cumulative distribution test is just opf@®o that in the first example; the test
with all data (resolution 1.713\) indicates twinning, whereas the correct untwinned stias are
observed with the high-resolution cut-off at FA0chosen using the same criteria as in the first
example. Again, the correct result was only obtained witin¢ated data. It is important to
emphasise that the high-resolution reflections do contséfullinformation about the structure
and the resolution cut-off is only needed for some statibtipplications including cumulative
distribution tests.

Thus, it is possible to identify the resolution range for g¥hit is correct to neglect experi-
mental errors and to assume that all normalised intengitiesampled from only two distribu-
tions specific for centric and acentric reflections. On thatrawy, it is not easy and not always
possible to find the resolution range in which both experit@egrrors and correlations between
twin related structure factors can be neglected. The effebiese correlations is analysed below

in more detail §3) to assist in interpretation of perfect twinning tests.

1.2.4 Partial twinning test

The reason why the cumulative intensity distribution ismhaiuised only for detection of twin-
ning is that a more efficient way of estimating twinning frantexists, the examination &f-
statistics (Yeates, 1988). This method can also be useafotr group assignment in the case of

partial twinning by examiningdd -statistics for all rotations allowed by unit cell paramste
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Figure 1.2. Effect of resolution cut-off on perfect twinning tests. BExale 1: twinned crystal of mutant
interleukin 1-beta (PDB code 112h; Rudolphal, 2003).

The resolution range used io) (s outlined by green boxes i and ().
The colour legend ford), (b) and €) is the same as for similar plots in Fig.1

(a) Cumulative distributions o for all the data, resolution range 18.6-1A4
(b) Second moment at for acentric reflections against resolution,
(c) Cumulative distributions o in the resolution range 18.6-282
(d) Completeness arf@ standard against resolutioR-standard %o (F)) /(F)
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Figure 1.3. Effect of resolution cut-off on perfect twinning tests. Bxale 2: untwinned crystal of human
deoxycytidine kinase (Elisabetta Sabini, personal comoation).

The resolution range used io) (s outlined by green boxes i and ().
The colour legend ford), (b) and €) is the same as for similar plots in Fig.1

(a) Cumulative distributions o for all the data, resolution range 29.0-147
(b) Second moment at for acentric reflections against resolution,

(c) Cumulative distributions o in the resolution range 7.0-3%

(d) Completeness arf@ standard against resolutioR-standard %o (F)) /(F)
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Assuming “ideal” conditionsyiz. negligible experimental errors and uncorrelated strectur
factors of the twin mates, consider the joint probabilitgtdbution of normalised intensities of

two twin-related acentric reflections,
dP(|1,|2) :exqf|1*|2)d|1d|2, 0< 1y, lIh < o0. (11)

The intensitied; andl, are independent random variables, but this is not so fomtedrinten-

sities
h=1-a)l1+aly
(12)
b = (l — Oz)|2 + alq
unless the twinning fraction is zero.
The transformation of random variables
H:|J1*J2|/(J1+J2), O<H<1-2a
Z=(h+%)/2 0<Z< o0 (13)

S:Sigr(‘]l*JZ)a Se {71’ 1}
can be inverted and therefore the random variaHIg&, Scompletely describe the probabilistic
model. The distribution of these variables immediatelyofek from the distribution of; and

o,
dP(H,Z,S) =

T 5 €XP(—2Z) ZdZdH. (14)

The random variableS H andZ are independent. RealisatioBs= —1 andS = 1 are equally
possible,Z is distributed as(2/4 according to 10) andH is distributed uniformly from 0 to
1- 2¢,

dP(H) = (1 —2a) tdH. (15)

The dependence am only enters the distribution of random varialte which is therefore a
sufficient statistic (Stuaret al., 1999) for the twinning fractiorv. Formally, the condition of
sufficiency ofH for a can be written a®(J;, |H,a) = P(J1,J2|H) and follows from the
independence of, SandH and (5). This means that the random varialblecontains all the
information abouty.

Experimental data can be transformed similarly and repteden terms of the mean inten-
sities of twin mates and their absolute differences. Theerpental distribution of normalised
mean intensities is suitable for answering question (i),detection of twinning. In turn, the
distribution ofH is most suitable for estimation of the twinning fractionggtion (ii). In addi-
tion, the latter can be used for point group assignment,tique§ii) provided that the twinning
is not perfect, as the distribution &f does not distinguish between perfect twinning operation

and crystal symmetry operation.
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The random variablél is no longer a sufficient statistic farin the presence of experimental
errors or correlation between twin-related structuredizct It is reasonable to assume that it
nevertheless remains a “good” statistics containing mb#teoinformation about the twinning
fraction in practical cases of moderate correlation an@éerpental errors. The actual problem is
not that some of the information is lost, but that interpietaof theH -test becomes complicated
if the distribution ofH is affected by various factors.

The “ideal” cumulative distributiorP(H) of the random variablé! is a straight line over
the whole range of possiblé (Eqn.15). In theory, which does not account for the correlation
between the twin-related intensities and experimentakgrthe linearity holds for both twinned
and untwinned data and the slope of the B0t ) againstH depends on the twinning fraction
(blue lines in Fig.l.4a).

In the original version of thél-test (Yeates, 1988) the linearity is essential, as thertiwg
fraction is estimated from the mean valuetbf However, the linearity breaks if there are theo-
retically impossible differences between experimentarinities related by the twin operation.
Such differences may appear as a result of radiation danoatie tcrystal, if there is a long
time interval between recording two related reflectionsrgealifferences could also occur, if
the X-ray beam was focused at different parts of the crystdhd these two measurements, as
these parts can have different values of the twinning foaabr even belong to different individ-
ual crystals. Moreover, a certain number of large relatiffer@nces between weak reflections
could arise for purely statistical reasons. The presensedf outliers distorts the experimental
distribution ofH at largerH and causes non-linearity as in Fig4(a). Such cases can be treated
by a modifiedH-test in which the twinning fraction is estimated using thepe of the plot at
the origin (Yeates & Fam, 1999).

If twin axis is approximately parallel to an NCS-axis, thée pairs of intensities involved
in the H-test correlate and the cumulative distributionHbbecomes non-linear over the whole
range of the argument (Fid.4b) and both versions dfi-test fail to give a correct estimate of
the twinning fraction. In cases similar to that in Fig4(b), however, the twinning fraction
can be estimated from the valueldfat the point where the experimental curve approaches the
line P(H) = 1. In this formulation theH-test is equivalent to the Britton test (Britton, 1972).
A disadvantage of such a formulation is that the estimatevofring fraction is based on the
right tail of the distribution, which can be seriously cqted by the presence of outliers as
mentioned above (Fidl.4c). Thus, further improvement of the test can only be achidwed
accurate modelling of the effect of NCS interfering withrwing (3.1) and by accounting for
outliers, while keeping the advantage of the original \@rsf theH-test, in which the whole

data set is utilised.
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An accurate interpretation of thé-test is further complicated by the effect of the experi-
mental uncertainties of the intensities. Lueiral. (2007) generated reference distribution$iof
in the presence of experimental uncertainties using ssbichmethods. It was shown that exper-
imental distributions match the predictions, in which btita linearity ofP(H) and the tangent
of theP(H) at low H are affected compared to the case of exact measurementsallyjshe
effect is very similar to that owing to the presence of irgerfg NCS.

These data suggest that, similarly to the perfect twinnagg, ttheH -test should rather be

treated as a qualitative test except for the cases of eakbedinear P(H). However, a good
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Figure 1.4. Effect of NCS and experimental errors on partial twinningf (&l -test).

Plots present cumulative distributionskdffor three twins: &) PDB entry 1rxf (Morgaret al., 1994), b)
PDB entry 1ku5 (Liet al, 2002) and §) PDB entry 1gwy (Manchenet al, 2003). In 1ku5 and 1gwy,
NCS and twin axes are approximately parallel. Experimeatitdtibutions are represented by red lines.
The intensities derived from atomic models were used to lsiteicumulative distributions dfl (blue
lines) for different twinning fractions (the numbers inffitef the blue lines).
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estimate of the twinning fraction is only important for exipgental phasing, which requires
an accurate detwinning. For MR structure solution detwigris not needed and the twinning
fraction is estimated along with atomic parameters durgfqnement. However, understand-
ing of various peculiarities in the behaviour BfH) can be important for correct point group

assignment.

1.2.5 Refinement using twinned data

The perfect twinning test and partial twinning tests disealsabove are important tools in the
preliminary analysis of the X-ray data. These help avoidrsrin space group assignment
and guide detwinning, which is less relevant for MR but is ami@ant for experimental phasing
using twinned data. However, joint refinement of atomic ni@ahel twinning fraction remains
the ultimate twinning test (Herbst-Irmer & Sheldrick, 1998n addition, the refinement of
twinning fraction for racemic twins (Flack, 1983) in the gemce of anomalous signal is a tool
for establishing the true enantiomorph in small moleculecstres.

The programSHELXL (Sheldrick, 2008) provides all necessary facilities foctsuefine-
ments and handles both twins by (pseudo)merohedry andibylegtmerohedry (Herbst-Irmer
& Sheldrick, 1998) including obverse/reverse twins (Hetbsier & Sheldrick, 2002). Its flex-
ibility in defining restraints and constraints allows anwaate refinement of pseudosymmetric
twins (Muller et al.,, 2006).

Specialised macromolecular refinements in CNS (Brumgeal., 1998) andphenix.refine
(Afonine et al,, 2005) implementing the FFT (Ten Eyck, 1977) are faster a&edefore more
suitable tharSHELXLfor twinned macromolecular crystals with very large asyrtrioeaunits.

In the case of twinned data, all these programs use leastesquefinement against intensity
target. The twin refinement has recently been implementéd®ERMAC (Murshudovet al.,

1997) which strictly follows the Bayesian paradigm and d¢fiere uses a marginal likelihood
target (Garib Murshudov, personal communication). In taoldi the internal representation of

X-ray data inREFMACmakes it possible to handle twins by reticular merohedry.
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1.3 OD structures

Partially disordered structures (including twins) andeseof polymorphs are frequently com-
posed of geometrically and chemically equivalent layerstriberger-Schiff (1956) introduced
the term OD-structure (OD stands for “order-disorder” Wdidate either actual or potential dis-
order) to describe this important particular set of crystalctures.

It must be underlined that a single crystal can be an OD-&freic In such crystals there is
nothing special about the diffraction of X-rays or struetgplution. The concept of OD-family
and corresponding formalism is used in the X-ray analysis gkries of polymorphs given
the structure of one of them. Such an application is not vergortant for macromolecular
crystallography, where the structure of a biomolecule ig1tdrest but not its crystallographic
environment. What is interesting about OD-structures ftioepoint of view of macromolecular
crystallography is the description and prediction of aslisorder including twinning. In any
OD-structure there is a potential for a well-defined type ré-alimensional disorder. Thus, on
one hand, one can expect a higher frequency of twinning ins®ctures than in fully ordered
structures (defined below §1.3.1), but on the other hand, the morphology of twinning becomes
evident from the structure of an individual crystal. Anathpecific feature of an OD-twin is that
the twin operations belong to the point group symmetry of@ielayer and therefore there is a
strong correlation between complex structure factors ftécgons related by the potential twin
operation. As this was previously discussedir?.3and§1.2.4 such a correlation complicates
the detection of twinning and therefore the analysis of @Desures from this point of view is
quite important §3.4andg3.5).

A partially disordered OD structure can be considered asiitig case of an OD-twin with
small sizes of individual crystals. Thus the above remark®B-twins are also relevant to par-
tially disordered OD-structures. In addition, the smatksi of the ordered domains result in a
significant diffuse scattering of X-rays and, as the dispm®©D-structures is one-dimensional,
the reflections have streaks along one direction, in whantstational symmetry is only local. In
practical terms, the one-dimensional partial disorderdsanore chances for structure solution
compared to two- or three-dimensional disorder. Moregpertially disordered OD-structures
can be considered in the first approximation as twinned ttres and diffuse features in the im-
ages can be ignored, as automatically happens during sthddta processing. More accurate
modelling of the crystal diffraction requires an analydishe interference between adjacent or-
dered domains, but in practice this is only done when it ihitsly necessary for interpretation
of the diffraction data (Examples 3 and 5§f.3.4). It seems therefore likely that the partial

disorder occurs more frequently than is thought and is ucetor ignored in most cases.
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1.3.1 Definition and classification

A set of structures built of equivalent layers is called an-family and the members of the fam-
ily are called OD-structures provided that all pairs of adjat layers in all members of the family
are equivalent but there are non-equivalent triplets ofamimg layers. The layers in different
orientations (if present) are assumed to have the same imendional translational symme-
try. This defines OD-structures of types | and Il (Dornbei§ehiff & Grell-Niemann, 1961).
The difference between the two types is illustrated in Hidp; if the surfaces of layers are
equivalent, then the OD-structure is of type |, otherwiseypfe Il. An earlier classification
(Dornberger-Schiff, 1956) distinguishes between type Ahveill layers in the same orienta-
tion (Figs.1.5c and1.50) and type B with at least two different orientations of la/@resent
(Figs.1.5h and1.5f). Combination of the two classifications is used in this ié&s distinguish
types I/A, I/B, Il/A and 1I/B (Fig.1.5). The translation vectors relating adjacent layers in$ype
I/A and II/A are called stacking vectors. At least two diffat non-equivalent stacking vectors
are possible; otherwise the structure is not OD.

OD-structures of type Il correspond to “head-to-tail” piackof layers with two different
surfaces. The definition of OD-structures needs to be gkseuato cover types | and Il as
well as type Il OD-structures with “head-to-head” and ai-tail” packing (type Il is always
[1I/B). The structure composed of equivalent layers is OD)itranslational symmetries of all
layers regardless of their orientations are equal, (iij\edent surfaces of layers form equivalent
contacts with adjacent layers, (iii) at least some of theatgms relating the laydr; to the layer
L, do not relatd_, to L; and (iv) at least some of the symmetry element of the layeaare not
the symmetry elements of the layler. Statements (i, ii) and (iii, iv) deliver a brief formulatie
of the vicinity condition and the maximum layer conditioespectively (Dornberger-Schiff &
Grell-Niemann, 1961). For example, the condition (iii) eres that the structure in Fi@j.5(c) is
of type I unlike the structure in Fid..5(d), which is of type Ill, while the condition (iv) ensures
that the structure in Figl.5b) is OD but that in Figl1.5@a) is not. The latter is called a fully
ordered structure. Were it not for (iii), this structure wibbe the only member of an OD-family
with ambiguous choice of the OD-layers.

The vicinity condition means that there exists a stronggnerinimum corresponding to a
given packing of adjacent layers and only this packing aeciihe local interactions are there-
fore the same in all members of an OD family, although the @labganisation is different in
different members owing to asymmetric packing. Therefang,representative of the OD family
gives full information on the covalent bonding and interewllar contacts in all other members.
Furthermore, given one OD-structure (say a structure ofiglesicrystal) the potential disorder

and polymorphism can be predicted. These important priegesf OD-structures justify the

46



P2 I/A (No 3) P121: P12(1)

lo

(T)z1d

E B b B
AV

v

B BEE B
B BEE B

v

NN NN
|2

NN
NN

~~
&
~~
N

/A (No 2) P121: P1(2)1 [ (No 1) P121: P11(1)

e
NS

@

%8

AN AN AN AN
.\ AN AN AN AN
y AN AN AN AN

AN AN AN A

(T)11d

EEEE]
v

@%%%q
aavd

EbEBEBE]

e vavd

d

~

Figure 1.5. Types of OD-structures.

This classification applies to OD-structures composedaitidal OD-layers and accounts for three gen-
eral characteristics: (i) geometrical identity of two suds of a single layer; (i) geometrical identity of

contacting surfaces of adjacent layers; (iii) identicaptations of all layers.

Drawings §), (c), (d), (f) and f) present OD-structures of five possible types. The type odhown
in the top left corner of the drawing; each code includes anivo indices which have the following
meanings:

(I) two surfaces of a single layer are identical,

(1) both two surfaces of a single layer and two contactindaaes are different;

(1) two surfaces of a single layer are different but the tzmts are between identical surfaces;

(A) all layers have the same orientation and;

(B) there are layers having different orientations.

Drawings @), (e) and @) present fully ordered structures which can be divided lay@rs identical to
OD-layers of related OD-structures)) (elates tolf), (c) and @); (e) relates tof); and @) relates tolf).

The structures are composed of identical asymmetric mt@sahown by triangles. OD-layers are indi-

cated by green bands in the background. Fully ordered steshave continuous background.

(Continued on the next page.)
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introduction of special terms and nomenclature. Extensfdhe definition to include structures
composed of layers with different chemical compositionglG& Dornberger-Schiff, 1982) is

also justified, as long as the generalised vicinity condii®obeyed. The term OD-structure
is sometimes applied to structures composed of blocks wighdimensional translational sym-
metry. There also exist structures composed of finite bloakgeneral term, modular structure

(Nespolo & Ferraris, 2004) is applicable to all these cases.

1.3.2 Symmetry of OD-structures

The OD-layer is a three-dimensional object with two-dimenal translational symmetry. The
total symmetry of the layer is therefore described by onedgil@ne space groups (Dornberger-

Schiff, 1956). An OD-family contains both structures witfase group symmetry and globally
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Figure 1.5. Types of OD-structures (continued).

The plane space group of OD-layer is shown in the frame enmtgame of the layers; the groupoid
symmetry of OD-structure or the space group symmetry of fotlered structure is indicated in the top
right corner of each drawing. The number in brackets is aeefee to Tabld.1

Stacking vectors are defined using related fully ordered structure as a neferdn type A OD-structure

these are the translations relating adjacent OD-layers.
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asymmetric structures. Therefore the symmetry of an ODlamdescribed in terms of one of
333 possible groupoids, (Dornberger-Schiff & Grell-Niemal961).

Notation for the layer symmetry (Tablel, columnc) resembles the notation for the space
group symmetry except for the index corresponding to thection with no translational sym-
metry being put in brackets. Explicit notation for the groighsymmetry (Tablel.1b) also
resembles the notation for the space group symmetry buifigseseparately the symmetry of
the layer and relations between adjacent layers. One offtrengages of this rather complicated
scheme is that it can be expanded to the structures withaewem-equivalent layers (Grell &
Dornberger-Schiff, 1982).

Table 1.1 presents “biological” groupoids (no inversion centres aftection planes) with
oblique, rectangular and square lattices. Explicit speatifon is shown in columnaj and in-
cludes two or three lines of indices. The first line defineglla@e space group symmetry of the
OD-layer. The second line defines symmetry operationsimglttie layell,, to the layer, 1 in
internal coordinate system of the laygy. The third line is only needed for the type . It defines
the relationL,, to L,_1 in the coordinate system af,. Each line contains three, five or seven
integer indices for oblique, square and hexagonal lattifeke OD-layer, respectively. These
indices show rotation axes along the following directiombe index in brackets correspond to
the direction orthogonal to the layer; the indices on the tlefthe brackets correspond to the
coordinate directions of the layer lattica, andb,_ and, in addition,(—a_ — by ) for hexago-
nal lattice; and the indices to the right of the bracketsaspond to the diagonal directions of
the layer lattice(a. + b.) and(b. — &) or, for hexagonal lattice(2a, + b, ), (b — & ) and
(—a — 2by).

The subscripts define translations along correspondiregtitins. Convention is similar to
that for the space group notations, a subscript of 2 expsdhsdranslation in halves of the unit
translation and so on. The unit translation across the $aggrrelates equivalent planes of ad-
jacent layers, therefore;244 and 4, in the second and third lines in brackets. Other subscripts
in the second and third lines are variable and can be eithegen or fractional numbers, but if
all of them are integers, the groupoid is a space group. Thabla subscripts in the second
and third lines are independent parameters; if there are than two variable subscripts in a
particular line, only two of them are independent. While fbemula with variable subscripts
defines an abstract groupoid, the specification of all indeeet subscripts define all geometri-
cal dimensions of a particular groupoid, including all pbkesdistances between the axes. Thus
the number of independent geometrical parameters for aplart groupoid can be picked up
from corresponding explicit formula, for example, four @aeters for (No 22) and one for (No
23). The ambiguity in packing can also be expressed in tefntiseovariable subscripts, for
exampleu in (No 23) can betup and the sequenceuy, —up, +Ug defines a particular packing

of three consecutive layers.
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Table 1.1.“Biological” generic OD-groupoids with monoclinic, rectgular, and square cells.

(a) Notations by Dornberger-Schiff & Grell-Niemann (1961 pédined in§1.3.2

(b) The space group symmetry of fully ordered structure witly, u, v, p’, ', U’ andv’ all zero.

(c) The plain space group symmetry of the OD-layer.
(d) The type of the OD-family§1.3.1and Fig.1.5).

(e) Reference number.
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In the OD structures of type A, all OD layers are related bpgtation, and the translation
vector between two adjacent layers is called a stackingpwethe notion of stacking vector can
be extended to any OD-type using the “parent” fully orderedcsure as a reference (Fig.5).
The set of all possible stacking vectors belongs to a ceplaime space group in a sense that the
points in three-dimensional space defined by these veatertha entities related by symmetry
operations. The plane space groups of stacking vectors faie @D-layer are different but
have common subgroup of translations with the basis veetqre, . The number of stacking
vectors per unit cell is further referred to as the numbetadflsng vectors.

There can be two or more stacking vectors. All of them are sgimnrelated in types |
and Il and there are two subsets of symmetry related staaléotprs in the type Il (subsets
{s1, 2} and{s;, s,} in Fig. 1.5d). In some cases any stacking vector is allowed to relate any
two adjacent layers (Figd.5o, 1.5cand1.5h) and in the other cases there are subsets of stacking
vectors such that the vectors from different subsets mtesnaite (subsetss;, s} and{s|, s,}
in Fig. 1.5d and subsetgs;, s3} and{s;, &4} in Fig. 1.57). In special casep = ¢, p = 0
and so on, either the groupoid becomes a space group or tteclesa stacking vectors than in
the general case. Strictly speaking, these special grds@oe different from the generic ones,
so the Tablel.1 can be expanded to include the list of non-equivalent speaises for each
particular generic groupoid.

If all variable subscripts in the formula of the OD-groupdithble 1.1a) are set to zero,
then the OD-structure becomes the fully ordered referemuoetare (Figsl1.5a, 1.5¢ and1.59).
The space group symmetry of this structure (Tabl) and the plane space group symmetry
of the OD-layer (Tablel.1c) unambiguously specify the generic groupoid. For examible,
generic groupoid (No 21) can be referred tdP4g22 : P11(2). This style of notations is easier
to apprehend at glance, but any specialisation needs tothidede This can be done by either
providing the values of variable subscript in the explicitthula or indicating the special point
in the plane space group of stacking vectors (see the lastgan1.3.4. The list of matching
space group : plane space group pairs was generated usiéngativnal Tables and reduced to
non-redundant set shown in Taldlel The explicit formulae followed from mutual positions of

axes in the reference space group.

1.3.3 Global organisation of OD-structures

The stacking vectors can be used to specify the global argtoin of a particular OD-structure.
Several members of an OD-family with two stacking vect®rands,, and corresponding se-
guences of stacking vectors are shown in High The variable subscriptp, @, ... in the

explicit formula of the groupoid can also be used for thigyese, but they define the translation
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of a given layer in the coordinate system of the previousrlagn the contrary, the stacking
vectors are defined in the global coordinate system and areftite more suitable for graphical
presentation of the structure.

The term order-disorder structure indicates the presehoetbe potential for one-dimen-
sional crystal disorder inherent for a given packing of edlja layers. An OD-family contains
OD-structures with both periodic and non-periodic arrangets of layers (periodic and non-
periodic sequences of stacking vectors). The former coores to single crystals, while the
latter are classified according to the degree of disordeghdmrase of the OD-structures possess-
ing three-dimensional translational symmetry, the digiom is made between OD-structures
with maximum degree of order (Figk.6a and1.6b), and the OD-structures with long repeats of
the stacking vectors (Fid..6c). The maximum degree of order means the following. If any two
pairs of adjacent layers are superimposed, then the mowktxaa copies of the whole struc-
ture completely overlap. Individual crystals of all OD-twidiscussed ifil.3.4are the structures

with maximum degree of order. The long repeats appeardncrystals of ZnS, SiC and are
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Figure 1.6. Overall organisation of OD-structures.

An OD-family with two possible stacking vectassands, (as in Figs1.5, 1.5c and1.5) is represented
by six typical members:

(a,b) OD-structures with maximum degree of order, single cigsta

(c) OD-structure with long repeat of stacking vectors (s3, 81, &, S1, S1, S, - - - ), @ Single crystal,

(d) OD-twin (...,S1, S1, S1: 2, 2, 925 -+ - );

(e) allotwin (...,s1, S1, S1, 2, S1, 25 Sty -+ - );

(f) disordered OD-structure (irregular sequence of stackaugors).
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thought to be owing to the crystal growth along screw didioca advancing several layers per
turn. The global organisation of periodic OD-structurethviong repeats is typically analysed
using the measured intensities and the Fourier transformsdfigle layer (Dornberger-Schiff
& Schmittler, 1971). An OD-structure without global traztébnal symmetry can nevertheless
contain ordered domains. Large domains with the same gitemganisation are individual
crystals of (polysynthetic) OD-twin (FidL.6d). An allotwin (Fig.1.6e) contains domains with
different sequences of stacking vectors and thereforerdiiit crystallographic symmetries. If
the dimensions of the ordered domains are small and conlpanéth the length of coherence
of the X-ray beam, reflections are elongated in the diregtierpendicular to the OD-layers,
and the structure is referred to as partially disorderedsDeture. A structure with random

sequence of stacking vectors is called disordered ODisnei¢Fig.1.6f).

1.3.4 Examples

(Example 1) The first case of a disordered macromolecular t@tare was reported by Bragg
& Howells (1954), even before the first protein crystal stuwe was solved. This was a “statis-
tically orthorhombic” crystal of imidazole methaemoglobvith apparent orthorhombic sym-
metry. The presence of monoclinic form of horse methaeniiglorystal with the sama and
b and two times smalles* indicated one-dimensional disorder with conserved atrecbf two-
dimensional layers. The diffraction pattern was analysettims of equal probability of two
possible relative positions of the adjacent layers (Catl&aHowells, 1954). Using the OD-
terminology, the “statistically orthorhombic” crystalrfo can be classified as a disordered OD-
structure of type I/B belonging to the OD-group@@22; : C12(1) (No 12). The two crystal
forms belonged to different OD-families, as in the mondcliand “statistically orthorhombic”
forms the neighbouring layers were related by crystallpli@translation and two-fold screw
rotation, respectively. The structure of the “statisticarthorhombic” form is unavailable, but
it can be modelled using the monoclinic form (PDB code 2mhhgdneret al,, 1977).

(Example 2) Three complexes of wheat-germ agglutinin fatisemorphous crystals (PDB
codes 1k7t, 1k7u, 1k7v; Murakit al., 2002) belonging to the space groRp, with equala and
c. The crystals were found to be twinned during the searchwfimrstin the PDB §3.2, Lebedev
et al, 2006). The analysis of crystal packing showed that these @®-twins by pseudomero-
hedry belonging to the OD-groupofe222; : C12(1) (No 12) of type I/B, the same groupoid
as in the previous example. A non-standard setihg; 1 of the individual crystal is consistent
with the groupoid settind322,2 : B1(1)2. The individual crystals have the same sequences of
stacking vectors(. . ., s1, &, S1, S, . ..) but two possible orientations of the reference layers.

Accordingly, the stacking sequences., si1, S, S1, S1, S, S1, - - .) Occur at the twin interfaces.
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The individual crystals are therefore monoclinic with tvayérs spanning thie-dimension of
the specialise®-centred orthorhombic unit cell. (A similar example is dlehin §3.4.) Patter-
son maps for 1k7t and 1k7v revealed non-origin peaks carrelipg to the stacking sequences
(s1, 1) and(sz, 82) and indicating partial disorder. There were no non-origéaks for the twin
1k7u, which was evidently composed of larger individualstays. The structure 1k7v with the
highest non-origin peaks is likely to resemble, in terms athborder and groupoid symmetry,
Bragg's “statistically orthorhombic” crystal.

(Example 3) A series of OD-structures of type I/A wi#i6)22 OD-layers were reported
by Trame & McKay (2001) for the heat-shock locus U proteimirblaemophilus influenzae
and its complexes. The layers were composed of “dodecanfidies’protomer is a hexamer).
The symmetry of layers assumed the generic groupéR : P(6)22. The native crystal was
a partially disordered ternary OD-twin and belonged to &isfised groupoid with six stacking
vectors,s; ~ ¢y + 0.4a. ands, ..., S; generated frons, by sixfold rotation. In the proposed
model of the crystal, the stacking sequenc¢es, s, S1, S1, &, --2), (- s 2, S5, 92, S5, -+ )
and(..., s3, S, 3, Ss, - - .) defined three individual crystals with2; space group symmetry
and translational NCS. The asymmetric unit of an individergistal contained two halves of
the dodecamer related by NCS translation defined by a staeldotor. This model accounted
for six non-origin peaks in the Patterson map. However, tlibas underlined that the model
was not exact, as the presence of diffuse streaks indicatalpdisorder (small volumes of
individual crystals). In addition, reflections correspimgdto two times largec were found in
some of the data sets, which might be due to the presence warembsequences of stacking
vectors with longer repeats. Because the OD-twin undeysuas of type A, it was possible to
replace detwinning by demodulation. The corrected X-rdag darresponded toR622 structure
with one dodecamer per unit cell and with every second Olerflagmoved.

(Example 4) An allotwin (Figl.6e) formed by the proteolytic domain @&rchaeoglobus
fulgidusLon protease was described by Dawteal. (2005). The individual crystals belonged
to P12;1 andP212,2; space groups (PDB codes 1z0v and 1z0t, respectively). Théa@dds
although composed of hexamers belonge&2¢2; (2) plane space group with half of the hex-
amer in the asymmetric unit. There were two stacking vedatoaspecialised2,2,2 : P2;2;(2)
groupoid of the type I/A (No 15), and the sequences of stackectors(. . ., 1, S, S1, S1, - - -)
and(..., s1, &, S1, S, - -.) corresponded to monoclinic and orthorhombic individugistals,
respectively. The reflections from two kinds of individuaystals were clearly separated in the
diffraction images enabling processing the same set of@sagtwo different space groups and
the separate solution of the structures of the two indiMidngstals. Reflections with diffuse
streaks were observed indicating that the volumes of iddali crystals were rather small. This

case should therefore be considered as allotwinning witligpdisorder.
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(Example 5) The crystal structure of DNA polymerase fromgehs29 (Wanget al., 2005)
is composed of identical layers. As follows from the authawmgerpretation of the data, this
structure is not OD, as there are present two types of noivaguot contacts made by geo-
metrically identical surfaces. The authors named the ntingontacts translocation defects.
The shape of the different subsets of reflections was shovagree with the overall statisti-
cal model of the crystal. The data presented in the paperawever insufficient to exclude
the possibility that this was a partially disordered ODusture of type I/A with the layer sym-
metryP2;1(1) and with predomination of.. ., s1, S1, Si, - ..) stacking sequences and with the
sequences.. ., s1, S1, S, S1, S1, -..) at the defects. Regardless of the interpretation, the X-
ray data were treated similarly to the OD case by Trame & Mck#®01). The demodulation
allowed experimental phasing using MIR and MAD.

(Example 6) The monoclinic individual crystal of lipase Brin Candida antarcticaPDB
code 1Ibs;3.2.5 Uppenberget al, 1995) belonged to the space gradp with unit cell pa-
rametersa = 959 A, b = 956 A, ¢ = 818 A and 8 = 1222°. The basis?’ = 2c — a,

b’ = —b, d = a+ c defined aC2 subgroup and an orthorhombic sublattice wath= 2295

A, b =956 A andc = 86.8 A. The twinning by reticular pseudomerohedry was generated
by two equivalent twin axes along andc’. The data were collected and processed in the
large orthorhombic lattice, non-overlapping reflectiormf the minor twin component were
removed and overlapping reflections detwinned. The moddetd and the final model were
deposited in the PDB in the orthorhombic coordinate systenis resulted in the apparent data
completeness of 27.5% (actual completeness was 82.4%antbkecules in the asymmetric
unit (two of these were independent in the actb2lspace group with the smaller unit cell, the
others were related by the crystallographic translatiorthe first two). In structural terms the
crystal was an OD-twin from the OD-familg2:2;2 : P2;2;(2) of type I/A (No 15) with two-
dimensional basisy = c/, by = —b’, normal component of stacking vectag = & /6, and
stacking vectorsy = +a /3 + b /2 + cy. One possibility for its global structure is shown
in Figs. 1.5@a), where the individual crystals lie one on top of the otheowdver, the exact
orthorhombic symmetry of the twin lattice favours anothessibility, with individual crystals
one in front of the other and with each sixth OD-layer havingbneaks and spanning through
both individual crystals.

(Example 7) The generic groupokR¥,2:2 : P2;2;(2) (No 30) has four stacking vectors.
The parallel componentga, + sb, of the stacking vectors are related by operations from the
plane space groupmni{m), in which a_ andb, act as the basis translations of the primitive
lattice. There are three special casess{i}x =%, (a special position on a mirror-reflection
plane), (i) eithers, = 0 ands, = 1/2 ors; = 1/2 ands, = 0 (a special position on the intercept

of glide-reflection planes) and (iig, = s, = 0 (a special position on the intercept of mirror-
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reflection planes). Accordingly, there are only two stagkiectors in the cases (i) and (ii),
and the case (iii) corresponds to the reference space @qés#h2. The special condition (ii)
defines a single point and therefore the corresponding &l groupoid32121(2)/2%2%2
has no variable parameters. The crystal of a domain of tharsplfactor Prp8p from yeast was
twinned by pseudomerohedry and belonged to this OD-grouf@leb Bourenkov, personal
communication). The individual crystals belonged to thacgpgroupP2,2;2 with a = 77.50
A, b=7744A, c=97.08A. The two stacking vectors and their sequence at the twénfate
weres; = (a./2+ ¢cn/2), s = (bL/2+ cn/2) and(.. ., s1, S1, S1, S1, 2, 25 S, ---). The C
r.m.s.d. from the special condition and between two mokih the asymmetric unit were
0.48A and 0.21A, respectively. The deposited data for this protein (PDBec8og4; Pena
et al,, 2007) were collected from a related crystal, which was awsefd of the same layers as
the twinned crystal, had essentially the same- 78.46 A, but belonged to the space group
P4,2,2 and had somewhat larger= 1228 A to accommodate less compact contacts between
the layers. Hence the tetragonal crystal was a fully ordstestture which could be considered
as a natural reference structure for the OD-groupoid oftliented form.

Two OD-twins are described in this thesis, the first is a twimietric merohedry and be-
longs to an OD-family of type 1/B53.4) and the second is a twin by reticular pseudomerohedry
from an OD-family of type I/A £3.5). A case of space group uncertainty in an OD-structure of

type Il/A is discussed if§4.5.
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2 MR protocols utilising Non Crystallographic Symmetry

MR is a multidimensional optimisation problem. In practitke multidimensional searches
are replaced by sequences of searches over subsets of e cases with many search
parameters, the constraints on the parameters derivedXramy or other data may be crucial
for the success of the MR. The choice of the target functioanisther characteristic of an
MR protocol; the target functions are typically different fotation and translational searches
although they are intended to approximate a general aitethe likelihood of a given set of
values of the parameters. Finally, the partial structurebmarefined after all or specific steps of
the protocol and used as a fixed partial model or a new seardelmdutomated MR programs
implement a few “standard” protocols for which these fouljanaharacteristics (sequence of
searches, constraints, target function and “refinementgdiare internally defined. A “difficult
MR problem” is in fact one for which the standard protocolsndd clearly indicate a solution
but a case-specific protocol succeeds.

In this chapter, several difficult MR cases are presentedhich | have contributed to the
structure solution. People involved in the particular pct§ are acknowledged and the related
publications are indicated in the corresponding sections.

The structure irg2.6 was solved using experimental phasing and MR was used for sub
structure solution. In all other examples discussed indhapter standard MR protocols were
attempted but were not successful excepgob, where this resulted in a partial structure. In all
these examples several search models were available imglsicigle-subunit models and either
single-domain model$2.5) or one or more oligomeric models. All the models were triethb
with and without sequence correction except§dr2, where the sequence identity was high and
correction of the model seemed unnecessary. In three casessubstantial modifications of
the search models were also tried, removal of low-idengtynsents 2.1 and§2.3) or hybridis-
ation of two modelsg2.4). For all the structures only one MR program was used in alttials,
eitherAMoRe(§2.1and§2.6) or MOLREP(all others). For each model two or more attempts at
structure solution were made using all data or with higloltggon cut-offs in the range 5 toA.
The initials runs were generally at low resolution for reasof speed and efficiency. For each
MR attempt, which resulted in an apparent solution with@eable contrast, a visual analysis
of the molecular packing for that solution was performedbfeed by rigid body and restrained
refinements if the packing was reasonable. For only onetatei§2.5) was a partial solution
found in this manner and confirmed by a decread®ina during refinements.

For single-subunit models ¢R.2, 2.3 and§2.4, subsets of the CRF peaks approximately
related by NCS were examined. A list of such relations isaratily generated biMOLREP
using the list of the SRF peaks; this procedure is similah&d tised iI"CRANS(§1.1.19. If
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some CRF peaks are related by NCS with a high accuracy (anthidesf 4 was typically used)
and these peaks are reproducible at different high-rasaleut-offs, they are worthy of special
examination by either the standard TF or multi-copy sea§ttl(12. However such a situation
did not occur in any of the examples where this analysis was.do

For oligomeric search models the CRF steps of MR were spaltjficalidated. For each of
several highest peaks of the CRF the search model was brimughihe corresponding orienta-
tion and structure amplitudes from this model were compiurdll with target cell parameters.
If the native SRF and the SRF from the model in a tested otienthave common peaks (the
native SRF contains more peaks owing to the crystallogcagpinmetry) then there is a high
likelihood that the tested orientation of the oligomer isreot. For the E1-helicas€Z.4) this
analysis, which is later referred to as an SRF test, showetdthie top three equivalent CRF
peaks were likely to be correct and therefore the respectiemtation was used as a starting
point for refinement of a hexamer. In all the other examplesdaligomeric models failed the
SRF test.

As the standard protocols were not successful, non-stdratatocols were designed and
applied to the structures under consideration. The aphesaased in the first three examples
can be classified as NCS-constrained exhaustive searahhe foarameters defining the struc-
tures of oligomers. The selection criteria were the maxinvatoe of the correlation coefficient
(CC) in the series of the TF searches (the first and the sec@mpes) and the maximal value
of the CRF (the third example). In the fourth example, theunegl changes in the oligomer
organisation were relatively small and therefore a locainoigation against the CRF was un-
dertaken. In the fifth example, the restrained refinementdigd model was a key step in the
structure determination. Finally, in the sixth example,NBS-constrained exhaustive search
was used for Hg-substructure determination.

58



2.1 NCS-constrained exhaustive search with the TF target

Thioredoxin peroxidase B from human erythrocytes (TPx-Bswtudied in the group of Pro-
fessor Jennifer Littlechild (University of Exeter). Theopgin was isolated and biochemical
experiments were carried out by Dr. Ewald Schroder and Deil Brrington; Dr. Michail
Isupov collected the X-ray data and solved the structureok part in designing the protocol
and scripts for the exhaustive search. The results weremtexs by Schrodest al. (2000) and
structure solution is described by Isupov & Lebedev (2008).

This case is characterised by moderate similarity of theckamodel (30% sequence iden-
tity with the target) and a large number of molecules in tharasetric unit (ten). However,
the knowledge of the point group symmetry of the oligomer dredavailability of a dimeric
homologous structure enabled substantial reduction imtimber of independent parameters
and made an exhaustive search feasible. Our protocol is t#hody NCS-constrained version
of the procedure proposed by Shesffal. (1999),61.1.13 in which a comprehensive sample
of subunit orientations was tested by conventional TF. Al related procedure was used by
Stropet al. (2007),§1.1.13 except that the variable search model was a single proteirttee

building blocks were helices in place of the oligomer andusiitis in our case.

2.1.1 Background

Peroxiredoxins are ubiquitous antioxidant enzymes. THs-B 2-Cys peroxiredoxin with a
subunit molecular weight of 22 kDa. The protein was purifieahf dated blood packs and
crystallised in space group2;, with unit-cell parametera = 88.9, b = 107.0, ¢ = 1195 A,
8 = 1109°. Native synchrotron data were collected to A.7

Attempted MIR phasing did not work owing to poor native cayssomorphism. The Se-Met
MAD approach was not possible, as the protein was purifiech fitee native source. Because
of experimental uncertainties, analytical ultracengétion, gel-filtration chromatography and
specific volume calculations were inconclusive regardimg aligomeric state of the protein,
suggesting eight to twelve subunits in the oligomer. The 8&€&ulated wittMOLREPrevealed
that TPx-B is a decamer with 52 molecular symmetry (F&y%a and2.1b).

2.1.2 Model preparation and structure solution

The closest available homologue, dimeric hORF06 (Eitg; PDB code 1prx; Chaetal., 1998)
shared 30% sequence identity with TPx-B. No MR solution wasé for single subunit or
dimeric hORF06 models.

A polyalanine model of hORFO06, containing amino acids 1-480of 224 in order to cut

off a poorly conserved domain, was used to generate alllgessecamers with 52 point-group
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symmetry. This was done by positioning the dimeric modehvit# centre of mass at the ori-
gin of the coordinate system, its molecular dyad coincideittt the coordinate axig and the
N-terminal face of the dimer pointing in the negative direct A two-parameter family of de-
camers satisfying the SRF was generated by applying thenfily sequence of transformations
to this dimer. Firstly, the dimer was translated by a disteR@long thex axis and rotated by
an anglew about its molecular dyad, using& steps inR and 2 steps inw. The values oR
andw were the two variable parameters of the model. Each new diasrrotated by-72° and
+144° aroundz and the five dimers were joined to form a decamer with pointigrsymme-
try 52 (Fig.2.1d). Finally, the decamer was rotated to align its moleculad$ywith the NCS
dyads known from the SRF (Fig@.1a). An inspection of the possible packing of the dimers in
the decamer suggestBdo be within the ranges 32-For —51 to—32A. Positive and negative
values ofR corresponded to two types of packing, with the N-termineéfaf the dimer pointing

towards or outwards the centre of the decamer, respecti@siyng to the two-fold symmetry of
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Figure 2.1. Structure solution of TPx-B. Sections of the SRF correspantb rotations by &) 18C°
and p) 72° indicate the 52 point-group symmetry of the TPx-B molecuid define the orientations
of NCS fivefold and two-fold axes.c The hORFO6 dimer, a building block of the search modsd). (
The search model with two variable parameters, the anglad the distanc®. (e) Two sections of a
two-dimensional search space crossing the point correpgio the correct decamer, the point with the
highest CC in the TF search againsandR. (f) The final decameric TPx-B structure. This figure was
prepared usinflOLREP, CCP4mgBOBSCRIPTandR.
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the dimers, thes search range was 0—18BQA total of 3600 decamers were generated, with two
types of packing. A TF search was conducted with these madalgAMoReand atcshscript

in which one cycle included generation of a decamer and theiif-this decamer as the search
model. The data with the resolution less thad @ere used to reduce the computational time.
For each decamer the highest value of CC was stored to gersetab-dimensional plot of CC
againsiR andw (Fig. 2.1e). The only strong peak in this ploR(= 42 A, w = 70°) corresponded

to the correct structure.

Subsequent phase improvement involved rigid-body refimgmestrained refinemeriREF-
MAC), tenfold NCS averagingDM) and restrained refinement with exterriaM-averaged
phases REFMAQ. The TPx-B model was rebuilt and refined to Bifactor of 0.192 and an
Reree Of 0.256 (Fig.2.1f; PDB code 1gmv; Schrodet al., 2000).
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2.2 Partially constrained exhaustive search with the TF taget

The anti-TRAP protein fronBacillus licheniformiswas supplied by Professor Paul Gollnick
(State University of New York, Buffalo) and the structurabdysis was carried out in the group
of Dr. Fred Antson. Crystallisation, data collection anfimement were conducted by Mikhail
Shevtsov. Dr. Mikhail Isupov (University of Exeter) and legisthe available X-ray data to solve
the structure (Isupov & Lebedev, 2008).

In retrospect, there were two major complications with ttracsure solution. Firstly, the
dodecamer of anti-TRAP fromacillus licheniformigurned out to be entirely different from the
known dodecamer of the homologous protein and, secondiye tivas four-fold translational
NCS which prevented the structure solution using one-l®/#R/TF searches for single sub-
units or trimers. In addition, a false origin solution enatgn the first successful MR attempt
(details ing4).

Assuming that the trimers were conserved gave a similaaitiito to that irg2.1in which the
knowledge of oligomer orientation and partial knowledg®liomer structure were available.
In the previous example all this information was used as tcaings in the exhaustive search.
In this case, constraints on the positions of trimers redaid the centre of the dodecamer were
relaxed. This reduced the contrast but added a validatiterion, the point group symmetry
of the complete oligomer. In addition, the new procedure faater and simpler to implement.

Should this approach fail, the protocol with all possiblestoaints would be invoked.

2.2.1 Background

Anti-TRAP is a small protein of 53 amino acids involved in wégion of tryptophan biosyn-
thesis and transport iBacilli. In particular, it regulates the activity of tryptophaneaittiation

protein, TRAP (Antsoret al, 1999). The crystal structure of anti-TRAP frdB subtiliswas

solved by Shevtsogt al. (2005), PDB code 2bx9. This crystal contained a dodecarparticle

with cubic 23 point-group symmetry (Fig.2a).

Anti-TRAP from B. licheniformiscrystallised in space group2; with unit-cell parameters
a=1185Ab=999A c= 1232 A, 3 = 1176°. The crystal diffracted to the resolution
of 2.2 A. If there were four dodecamers in the asymmetric unit thecsiz volume would be
2.35A3Da ! and the solvent content 47%. The sequence identity betBesnbtilisand B.
licheniformisanti-TRAP was 64%.

The native Patterson synthesis Bf licheniformisanti-TRAP contained three strong non-
origin peaks at (0.5, 0.13, 0.0), (0.5, 0.0, 0.5) and (0.03,00.5), with heights of 0.4, 0.4 and
0.16 relative to the origin peak, respectively (FIg). This suggested that the asymmetric unit
contained four anti-TRAP particles related by translaldiCS. The SRF had strong features
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at y values of 180, 12® (Fig. 2.2c) and 90, which correspond to the 432 symmetry. This
means that the NCS axes are in special orientations witlecespthe crystallographic two-fold
axis (two of the four NCS triads are orthogonal to the crystmbphic axis). These data may
suggest that the asymmetric unit of the crystal contairgeeifiour dodecamers with 23 point-
group symmetry (the high apparent symmetry of SRF in this athe consequence of special
orientations of the NCS axes) or four 24-mers with 432 symynétowever, in the second case
one of the six diagonal dyads of a 24-mer would be paralleldystallographic two-fold screw
axis and such an arrangement would generate strong peaks imative Patterson synthesis
atv = 0.5, which were not observed. Moreover, four 24-mers wouldltés an impossible

specific volume and solvent content and therefore this piisgiwas excluded.
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Figure 2.2. Structure solution of anti-TRAP frof. licheniformis (a) Ribbon diagram of the dodecamer
of anti-TRAP fromB. subtilis (b) Native Patterson synthesis, in which three strong norivafgnt non-
origin peaks are presentc)(12(° and 180 sections of the SRF, indicating the orientations of twatfol
and threefold NCS axes. The trimeric search model (cent@s)ariented so that its threefold molecular
axis was aligned with the NCS threefold axis (red lines). €arshes were performed for a series of
orientations related to that shown by a rotation around tbkecular threefold axis by the variable angle
x- (d) The highest CC in the TF search is plotted as a functiog.ofe) The MR solution with four
dodecamers in the asymmetric unit, which are related byr#imslational NCS. This figure was prepared
usingBOBSCRIPTMOLRER CCP4mg (Pottertoat al, 2004) andR.

63



2.2.2 Models and preliminary MR trials

Prior to the structure determination, it seemed likely ttatecamers in the crystalsBflicheni-
formisandB. subtilisanti-TRAP proteins would be identical. Therefore, threedais were tried
in the conventional MR attempts, the dodecamer, a trimeraasitigle subunit. Owing to the
high sequence similarity between the two proteins, the iisadere used without any modifica-
tion, but several resolution limits were tried.

First of all, the dodecameric model was used, but withoutsss. Moreover, the CRF did
not contain strong features and its top peaks failed the Sik8ation, suggesting a different
organisation of the dodecamers in the anti-TRAP proteims 8. subtilisandB. licheniformis
Further attempts with the trimer and single subunit failedvall. This was not surprising, as
these models represented only a small part of the asymnugiiticontent.

Nevertheless, the trimeric model (FR2c) appeared attractive because of the presence of a
trimeric B. licheniformisanti-TRAP species in solution. Therefore, the next attemgtructure

solution was the constrained exhaustive search with tihretic model.

2.2.3 Structure determination

It was possible to use a two-dimensional exhaustive seardlasto one described in the previ-
ous section. In this case, the variable parameters woulgl Inegn the distance from the centres
of trimers to the centre of the dodecamer and the angle dgfihia rotation of the reference
trimer about its three-fold axis.

However, in order to accelerate the search and retain aat@lidcriterion, another protocol
was applied in this case. The trimeric modelBfsubtilisanti-TRAP was positioned at the
origin and rotated to align its molecular threefold axishane of the NCS three-fold axes. The
angley defining the rotation of the trimer about its three-fold axiss sampled with a®2step
over the range 0-120which was sufficient owing to the threefold symmetry of thedsl. A
TF search was carried out for each of these 60 orientationg MOLREPand the data in the
resolution range 15-4 A. Fig. 2.2(d) shows the dependence of the highest CC in the TF search
on x, with a clear solution a = 74°. The CC at this global maximum is 9.4%, while the CC
at the other maxima is below 6%.

In the model shown in Fig2.2c, the N-termini of the subunits point away from the origin.
In the general case it would have been necessary to repe@fFthens with the 'flipped-over’
model, in which the three-fold axis has the same orientatiom the N-termini point towards
the origin. However, in our particular case it was not needsdhe NCS axes were in special
orientation relative to the crystallographie¢ @xis and the 'flipped-over’ trimers related to the

original trimers by crystallographic rotation.
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The search was repeated for the three remaining NCS thdeafels. Similarly to the con-
ventional MR protocol, each found trimer was added to thégdanodel used as a fixed model
in the next TF search, until one complete dodecamer was iigual inspection showed that
the resultant dodecameric model had point group symmetrg8xpected. This was strong ev-
idence for the correctness of the model, as the 23 symmetistreints were partially relaxed in
the exhaustive search. Comparison of the new dodecametheitbne fromB. subtilisshowed
that the two particles were entirely different and thus akpd the failure of the first MR trial.

The resulting dodecamer was used as a search model for theteexf structure solution, in
which four dodecamers related by translational NCS weratémtusing conventional MR. The
electron density map allowed model correction to Bhdicheniformissequence and the model
was iteratively refined and rebuilt usiREFMACandCoot At the early stages, the behaviour
of the refinement seemed normal. However, the refinemetdd@iR = 33% andRyee = 43%.

At this point, the &,—F; synthesis was of reasonable quality, but did not indicatgswéfurther
model improvements. Moreover, main-chain breaks werergbden the electron density maps
and the water structure was poorly defined. Therefore, odeatoner, which had fewer main-
chain breaks in the density, was used as the model for a fuiResearch. This time one of the
correct RF peaks split. Dodecamers in slightly differefmmations were positioned one by one
using the TF. The new structure was easily refinel to 19.7% andRyee = 25.4% (Fig.2.2e).
The problems with the first refinement attempt and the diffeeebetween the two models is
analysed irg4.1

2.2.4 Concluding remarks

Given a known trimer and the orientations of the NCS axes,n&nawn dodecamer with point
symmetry 23 is defined by two internal and three translatipagameters. Four independent
trimers have twelve rotational and twelve translationabpeeters. Therefore, there are 19 sym-
metry constraints available for the exhaustive search thghtrimeric model. In our exhaustive
search, only eight angular parameters (two for each of fimets) were constrained. This was
nevertheless sufficient to exclude the CRF from the protandlto solve the structure. (The fact
that the CRF was a weak link in the structure determinatios ialised during the preliminary
MR trials with the trimeric model, as the orientations of thedel defined by CRF did not pass
the SRF validation.)

The protocol with partially relaxed NCS constraints had twajor advantages compared
to the fully constrained exhaustive search. Firstly, it \wasriation of one-by-one search and
therefore it was fast and, secondly, the relaxed conssrairdvided a validation criterion, the

expected 23 symmetry of the dodecamer.
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In addition, this protocol was easy to implement, as it reggionly a minimal modification
to the standard protocol. NameMOLREPwas instructed to switch the RF step off and to use
the external list of orientations instead. So, for each of &eries of translation searches, a table
was manually created that contained polar angles definegitidel orientations to be tested by
the TF. In our case, these were 60 rotations about the tbtdeNICS axes. In each table the first
two polar angles were the same and the third Wam@ 2@ with the step of 2. The first two
angles were copied from the table of peaks of the experir8RE.

A similar protocol was used in the structure solution of thggenating component of 3,6-
diketocamphane monooxygenase freiseudomonas putidgsupov & Lebedev, 2008). In the
latter case the homology was much lower (14%), but there w#s ane dimer to locate in
the asymmetric unit. The automation of this protocol isigtrdiorward and only requires a
simple additional program to test the symmetry of the expental SRF against the point group
symmetry of the model.

The crystal structure solution of anti-TRAP frdBa licheniformisunderlines the importance
of using a conserved protein oligomer for the MR. It was th&-8RAP trimer that was con-
served in two specie®. subtilisandB. licheniformisalthough both homologue proteins form

dodecamers with quite rare 23 point group symmetry.
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2.3 Partially constrained exhaustive search with the CRF tayet

The biochemical and structural studies of hydroxycinnar@xyA hydratase-lyase (HCHL)
from Pseudomonas fluoresceAbl103 were carried out by Dr. Gideon Grogan’s group (YSBL)
in collaboration with Dr. Marek Brzozowski (YSBL), Dr. Nichas Walton (Institute of Food
Research, Norwich), Dr. Derek Smith and Dr. Chandra VermaifBrmatics Institute, Sin-
gapore). My role was in finding the MR solution of the crystalisture of HCHL (PDB code
2j5i). The results are presented by Leonatal. (2006). The details of the structure solution
are presented in a separate publication (Lebedey., 2008).

Compared to the previously described protocols, the caingér on the orientation of the
oligomer were relaxed in this case, but constraints on &gl organisation were used in full.
The oligomeric models from a one-parameter family were estdsy maximum value of the
CRF and the consistency of the orientation of the best olggomith the SRF was a validation
criterion. This approach was adopted because it seemedtiatse build a reliable model of

the complete oligomer prior to any use of the TF, which wasplarated by translational NCS.

2.3.1 Background

The bacteriunP. fluorescen®AN103 is able to grow on ferulic acid as the sole carbon source
utilising a catabolic pathwayia vanillin (Narbad & Gasson, 1998). An interest in the transfo
mation of ferulic acid, an abundant natural product into eoflae agent vanillin is dictated by its
industrial significance.

Ferulic acid is transformed to vanillin in a three-step tiac Ferulic acid was first ligated to
coenzyme A to form feruloyl-CoA by the action of 4-hydroxyoamate-CoA ligase-synthetase.
The acyl-CoA thioester of ferulic acid was then transforrteedanillin by the action of a single
enzyme, HCHL, which first catalyses the hydration of the dediond between £and G to
yield a hydroxyacyl-CoA and then retro-aldol cleavages @aeC3 bond to give vanillin and
acetyl-CoA.

The enzymatic transformation performed by HCHL represantinteresting mode of en-
zymatic activity that is reminiscent of the hydration of é#éibonds in enoyl-CoA and related
substrates in fatty-acid oxidation pathways by the enzymonase or enoyl-CoA hydratase
(ECH). In contrast to ECH, HCHL performs a second half-reacta cleavage of a C-C bond.
The hydration mechanism proposed for ECH by (Bahretaad., 2002) involves sin-addition in
which the only source of protons is the catalytic water maledonating all its three atoms to
the product, presumably in a concerted mode. Thus, of dgatgsest is the question whether
such hydration mechanism is conserved in the two enzymeb@mdhe active cite of HCHL is

modified to be able to perform the second half-reaction.
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Both ECH and HCHL are members of a low-sequence-identityeamily of enzymes
known as the crotonase or low-similarity hydratase/is@®ser(LSI/H) superfamily. The en-
zymes of this superfamily are characterised by pronounicadtaral similarity, which is at odds
with the divergent catalytic chemistry including the steeecific hydration of double bonds
performed by ECH and also dehalogenation (Benmihgl., 1996), double-bond isomerisation
in fatty acids (Modiset al,, 1998; Mursulaet al., 2001), cyclisation/aromatisation reactions in
the synthesis of vitamin K intermediates (Trug&bal., 2003) and the retro-Dieckmann con-
densation (Eberhard & Gerlt, 2004). The divergent catalysioften enabled by amino acid
residues which have no counterparts in the sequences oftte superfamily members (Gerlt
& Babbitt, 2001).

The majority of solved crotonase structures are homohessacansisting of a dimer of
trimers. Moreover, the trimers of the closest HCHL homokegpossess an intra-trimer domain-
swapping fold as defined by Hubbagtlal. (2005), in which the trimer is stabilised by extensive
interactions between the C-terminal domain of one subuitit the N-terminal domain of its
neighbour. These homologues include ECH, dienoyl-CoA &ase, 4-chlorobenzoyl dehalo-
genase and the human AUH protein. The major overall diffedretween these homologous
hexamers is therefore defined by different relative origmma of trimers.

HCHL was crystallised and a native 1A8esolution data set was collected at ESRF Greno-
ble station ID14-EH1 (Leonardt al,, 2004). The crystal belonged to the space grB@gp?;2
with unit cell dimensions = 1542 A, b = 1675 A, ¢ = 1308 A.

Three structures of HCHL sequence homologues, rat liver EZ2#6 sequence identity;
PDB code 1dub; Engedt al, 1996)T. thermophilusECH (31% sequence identity; PDB code
1uiy) and 4-chlorobenzoyl-CoA dehalogenase fieseudomonas sf§28% sequence identity;
PDB code 1nzy; Benningt al, 1996) were used in the structure solution by MR as described
below. These structures are further referred to by their RDdRes.

The native CRF and the Patterson map were indicative of twarhers in the asymmetric
unit related by translational NCS@Ba + 0.30b + 0.50c (the heights of the corresponding
Patterson peaks were 23% of the origin peak Atr@solution cut-off). This interpretation was
in agreement with the solvent content of 46% correspondirtgrélve subunits per asymmetric
unit. Hexamers and trimers derived from the crystal stmestwf the selected homologues were
used as a search models in the preliminary MR trials, alorth thie single subunits. Both
complete models and their truncated versions were tested MOLREP(Vagin & Teplyakov,
1997). The TF searches were attempted in both default modehich the translational NCS
is automatically accounted fo£1.1.15 and with the translational NCS option turned off. No
significant contrast was observed in the RF or TF for all dathfar resolution cut-off &. The

difficulties with the MR were attributed to different orgaation of the hexamers in the target
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structure compared to the search models and to the presetieetanslational NCS.

2.3.2 Structure solution

The RF uses only the fraction of the Patterson map within argpbentred at the origin, which
does not include the non-origin peaks. It was thereforeoregse to try a non-standard ap-
proach, in which the search hexamer is adjusted using thesRFtarget function. It was ex-
pected that the subsequent TF search with two correctedrtezaelated by translational NCS
would be substantially assisted by the packing functiontwashexamers would constitute a
complete asymmetric unit except for the truncated residues

To achieve the best possible contrast in the MR searchesocanthke the MR searches
with alternative models comparable, a careful search nfu@glaration was undertaken. Firstly,
the models of single hexamers were derived from PDB entrifedb,11uiy and 1nzy, in two
of which, 1uiy and 1nzy, the asymmetric unit contained ong thinee molecules, respectively,
and the complete hexamers were generated by crystalldgrapimmetry. Secondly, the single
subunits from three homologues were superimposed usirggtandary structure matc8$M
Krissinel & Henrick, 2004) implemented Doot(Emsley & Cowtan, 2004) to identify segments
of residues that were spatially aligned in all three homoésgand had close values of the back-
bone torsion angles (Fig-3a). These highly conserved segments (Rigo) were kept intact in
corresponding hexameric models, while all other residusrewemoved from all their subunits.
In particular, the removed segments included the completeri@inal domain and all loops.
Figs.2.3(c), 2.3d) and2.3(e) represent the spatial alignment of the three truncatedrhexic
models by one of two trimers. The fitted and free trimers apausgely shown in Fig.3(c)
and2.3(e), respectively. The side view of the aligned hexamers isesgnted in Fig2.3(d).
The difference in orientations of the free trimers was measusingLSQKAB(Fig. 2.3¢).

Comparison of oligomers from homologue structures (Ei@) suggests that trimers in the
unknown structure are spatially similar, but the hexameesdifferent from those in homo-
logues. The centres of masses of the trimers have similairgp&n homologous hexamers.
Assuming similar spacing in the unknown structure, thetiradarotation of the trimers around
three-fold axis is the only parameter to vary in order todailcorrect hexameric model. There-
fore, a set of models was generated from the three truncatehters with the relative rotations
of trimers in the range 0-12Qsufficient range for the point group 32) and with an incretra#n
2°. Smaller differences in the organisation of trimers andhangpacing between trimers might
be nevertheless essential for the performance of the MRfdntethe related parameters were
roughly sampled by scanning hexameric models derived floeetdifferent homologues.

The RF MOLREB at 5A resolution cut-off was performed with these three sets oflels

using atcshscript to generate plots in Fig2.4(a), 2.4(b) and2.4(c), in which the maximum
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(©) (d)
Figure 2.3. Comparison of hexamers formed by three homologues of HCIIH Eom T. thermophilus
(PDB code 1uiy, red), ECH from rat liver (PDB code 1dub, gjeemd 4-chlorobenzoyl-CoA dehalo-
genase fronPseudomonas sgPDB code 1nzy, blue).a) Superposition of single subunits to identify
spatially conserved segmentb) Superposition of the conserved cores of subun@sS(perposition of
truncated trimers, in which only the cores of their subuhége been preserved, €) Superposition of
truncated hexamers by fitting one of two trimerd) the side view showing that the distance between
centres of trimers is conserved in the three homologueg;@itite top view showing the relative rotation
of the second trimer, which was not used in fitting of hexamers
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Figure 2.4. Determination of relative orientation of trimers in the HChiexamer using NCS-constrained
exhaustive search with the CRF target. Search models waegafed from the truncated hexamers shown
in Fig. 2.3(d). In each case, the CRF was computed for a series of hexamewhjch the reference
trimers were fixed and the free trimers were rotated arouadhrtblecular threefold axis by the variable
angley. The value of CRF/(CRF) for the highest CRF peak (thick line) and for the 10takp&hin
line) were plotted against for three series of hexamers generated fr@nRDB entry 1uiy b) PDB
entry 1dub andd) PDB entry 1nzy. The reference angles in the three series warsistent, so any two
hexameric models with the same valuecofvere spatially aligned.
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value of RF#(RF) was plotted against the angtedefining the relative rotation of trimers in a
given model. For the consistency of the plots, the referealzive orientation¢ = 0) corre-
sponded to spatially aligned hexamers. Two of three sefie®dels (Luiy and 1nzy) produced
strong peaks at ~ 7(°. In both cases, the orientation of hexamers associatedhistpeak was
consistent with the SRF. This peak was the only strong pe#hkeiriuiy-based plot (Fig2.4a)
and therefore the corresponding hexameric model (luiy, 70°) was selected for the final MR
search, which was performed usiMDLREPat 3 A resolution in the default mode, in which
both hexamers related by translational NCS were accounted & single TF run. The results
of this search are given in Tabkl Significant contrast is observed between the first six NCS-
related RF-peaks and the seventh RF-peak in both the RF afid-thn addition, eight relevant
orthorhombic groups were tested and a significant contnatstel TF was observed between the
correct space group2;2:2, known from systematic absences, and incorrect groupgid-Ri
body refinement of the TF solution and an initial round of nased refinement blREFMAC
(Murshudovet al.,, 1997) gave aiR-value of 0.43 and aRee Of 0.52.

Subsequent model building and refinement were carried datREFMACIn conjunction
with ARP/wARRPerrakiset al., 1999) in the whole (30-1.@) resolution rangeCootwas used
for manual corrections to the model. The filand Rqee Were 0.179 and 0.215, respectively,
with 94.1% residues in the most favoured regions, 5.6% iitiaddl allowed regions and 0.3%

in generously allowed regions as indicated*RROCHECK(Laskowskiet al., 1993).

2.3.3 Structure analysis

The substrate, feruloyl-CoA, was modelled into the actite Isased on the structure of ECH
bound to the feruloyl-CoA-like substrate 4-(N,N-dimetylino)-cinnamoyl-CoA (PDB code
ley3) and energy minimisation was performed usBtdARMM (Brooks et al, 1983). The

model revealed certain differences between the active otdHCHL and ECH. One of two

RF peak No RF(RF) TF: the best CC
P2,2,2 P22,2;
1-6 6.67 0.294 0.256
7-12 3.06 0.250 0.221

Table 2.1. The second step of the crystal structure solution of HCHLwimch the modified hexamer
from PDB entry 1uiy was used as a search model in conventdRaIMOLREB. The results of the TF
search are shown for two space groups, in which the highestlation coefficients were obtained. Every
6 peaks define equivalent orientations of the hexamer, peidientical values in the RF and TF runs and

are grouped in a single row.
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carboxylate residues (Glu) binding the catalytic waterenole in ECH active cite is replaced
by Ser123 in HCHL sequence. This serine residue is&?aﬂvay from the catalytic water and

makes contact with the reactive carbon of the substrate atarnvimolecule. The restructuring of
the active site may be necessary for HCHL to catalyse the-gdtiol half-reaction, which is not

performed by ECH, and may also indicate a somewhat differeahanism of the hydration step
compared to ECH. In addition, the modelling showed that 39r2vhich is hydrogen bonded
to the phenolic group of feruloyl-CoA missing in cinnam@bA, is an excellent candidate for
the structural determinant of the HCHL specificity.

A comparison of the architecture of the trimers and hexaméiddCHL homologues is
summarised in Tabl2.2 These data support and explain the efficiencyl othermophilus
ECH (ECHTt; PDB code 1luiy) as the model in the molecularaepinent strategy. The best
superposition of HCHL and ECHTt trimers requires only®la8justment of subunits, indicative
of their similar organisation. However, the assembliesheke trimers into hexamers are quite
different and a rotation of ECHTt trimers by 9.@ith respect to each other was required for
the best superposition of hexameric enzymes. The combimafi a wide range of rotational

differences in quaternary structures of trimers (1.88ahd hexamers (0.7-2P)6within the

PDB code 1dub 1nzy Luiy
Identity (%) 28 25 31
Aligned C* atoms (%) 79 80 74
Angle (1< 3) () 3.84 2.42 1.84
Angle (3 6) (%) 0.72 14.93 4.77
R.m.s.d. (single subunit)io 1.62 1.63 1.60
R.m.s.d. (trimer)A) 2.08 1.78 1.80
R.m.s.d. (hexamer}) 2.17 6.43 2.70

Table 2.2. Comparison of molecular architecture of HCHL and its horgaks used in molecular re-
placement. For comparison of trimers, each trimer was Yigithbally superimposed with the HCHL
trimer. This was the subsequent starting position for tret B@perposition of corresponding subunits of
those trimers: it resulted in the rotation by a certain atigge is quoted here as angle1 3). Hexamers
were also initially globally superimposed and then one ériwf the relevant protein was fitted onto the
corresponding trimer of HCHL, giving the rotation angletti|aquoted here as angle (3> 6). (The
relative rotation of trimers required for the best fit of heras is twice as large.) R.m.s.d.s were cal-
culated for three-dimensionally aligned @toms. All superpositions and three-dimensional aligrisien
were performed using the program O (Joeeal, 1991). The C atoms for the spatial alignment were
selected automatically, using the default threshold of’3.8he fraction of aligned € atoms is shown

relative to their total number in HCHL.
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crotonase superfamily illustrates the plasticity of theér/hexamer architecture that is adopted

to support efficient catalysis of a particular type of cheahfrocess.

2.3.4 Alternative method of the HCHL structure determination

The strategy discussed here helped to solve the MR problemplaated by translational NCS
and by differences in the oligomer organisation of the tapgetein and its homologues. This
strategy may seem quite specific and applicable only in teescavhen the factors defining such
differences can be derived from the known structures. Itthvaefore interesting to resolve this
structure using a more general approach. A strategy atlihie ideas of the locked rotation
and translation functions (LRF; LTF; Tong, 2001) was impdeted intcshscript that cut a
sphere out of the Patterson map computed with a fine gridtethe map and placed it in a
trigonal lattice to align NCS axes with crystallographiartslations. The map was averaged to
produce synthetic P32 data, which would correlate with a ®B8&ture containing one correct
hexamer per unit cell and one subunit per asymmetric unith @&ustructure was built in a single
run of conventional MR to yield a correct hexamer, which wias@d in the correct cell in the
second round of MR against experimental data. This proeedais conceptually identical to

the LRF/LTF procedure, but only required the programs atael in the CCP4 suite.

2.3.5 Conclusion

This example demonstrated the efficiency of the RF-likediaig optimisation of the search
model prior to the translational search. In this particaase the optimisation was performed
by simple one-dimensional exhaustive search, but mulgdsional local optimisation is also
possible §2.4). Animportant characteristic of the optimisation agathstRF is that the filtering
of the data is accomplished in the rotational space and ibissquivalent to the filtering by
additional temperature factor or by a resolution cut-dfE angular resolution is controlled by
the number of terms preserved in the spherical harmonigsss@Eqn.3) approximating the
Patterson function. Broad peaks in Fi@s4(a) and 2.4(c) indicate that there is a significant
signal even for the models that differ from the target by taitgal relative rotation of their
internal fragments. This feature means there is a largéusaaf convergence in the iterative
refinement of oligomeric models against RF-like target carag to conventional rigid body

refinement.
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2.4 Rigid-body refinement with the CRF target

This example demonstrates how the RF target performs iridimainsional optimisation. Bio-
chemical studies and protein production of the E1-heliéasa bovine papillomavirus-1 (BPV-
1) were carried out in the group of Dr. Cyril Sanders (Uniitgref Sheffield) and structural
analysis was conducted in the group of Dr. Fred Antson at {2vRp; Sanderst al, 2007).
Apo E1 was crystallised by Dmytro Sizov and the structuretsmh was conducted by Oleg Ko-
valevskiy using as a model the structure of E1 in complex WiA determined at Cold Spring
Harbor laboratory (PDB code 2gxa; Enemark & Joshua-Tor620Dr. Michail Isupov (Uni-
versity of Exeter) and | determined this structure indejgartlgl, using structural data of other
hexameric helicases before the E1-DNA complex structucauie available. Our protocol is
presented in a separate manuscript (Lebexdel., 2008).

Compared to the previous example, in which accurate althdingpmplete information on
the oligomer organisation was available, only an approtémaodel of the oligomer was avail-
able in this case. Therefore an exhaustive search was eeplacrigid body refinement of four
parameters. Thus, the protocol involved: the CRF searghd biody NCS-constrained refine-
ment of the oligomer in the best three orientations and thee€dfch with corrected oligomeric
model in the best orientation.

Improvement of a model after the CRF step is typically penfed using PC-refinement in
P1 space group (Bruinger, 1990). However, we used the CRFaaget function, which gave just
the opposite effect to that achieved by PC-refinement. Nartted use of CRF target function
allowed removal of unreliable long cross-vectors and actdu in both spatial and angular
resolutions. This was necessary as we wanted to apply painpgymmetry constraints to the
oligomer, for which certain asymmetry was expected by analeith other available helicase

structures.

2.4.1 Structure solution

The crystal structure of BPV-1 E1 helicase (Sandxral, 2007) belongs to the space group
P2,2,2; with unit-cell parametera = 1351 A, b = 1807 A, ¢ = 1875 A. The asymmetric unit
contains two hexamers related by translational NGB &+ 0.08b. Each subunit is composed
of an AAA+ domain (200 amino acids) and an oligomerisation domai¥% amino acids).
The best crystal diffracted to a resolution of ADAL the time of the structure determination,
the closest homologue in the PDB was the AAA+ domain of HP\hé&icase, which had 51%
sequence identity with the AAA+ domain of the target pro{@&@DB code 1tue). In this structure
the oligomerisation domain was absent and the AAA+ domaist&x in a monomeric form.

The closest homologue with a known hexameric structure Wad®$elicase (PDB code 1n25),
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which shared only 16% of its amino acid sequence with theléumth of the target protein.
Attempts to find a solution with the monomeric protein fronnelor with the hexamer from
1n25 failed.

The structure was solved starting from a synthetic modetadoimg six AAA+ domains
from ltue, corrected according to the target sequence aedfiit the six subunits of the hexamer
from 1n25 usingSSM(Figs.2.5a, 2.50 and2.5¢).

Firstly, the synthetic model was tried as a search moddfoL.REPusing a simultaneous
search for two hexamers related by translational NCS at thetép. Use of all data to the
high resolution limit of 34, as well as with high-resolution cut-offs of 4 andd5was tried but
no TF solution was found. However, the first three peaks inRRepersistently had a small
but appreciable contrast compared with other peaks (seBuithigh-resolution cut-off of A
are shown in Fig2.5f). These three peaks were equivalent and corresponded &péuoial

orientation of the hexamer six-fold axis aloagnd along the crystallographic screw two-fold
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Figure 2.5. Structure solution of BPV-1 E1 helicase) The AAA+ domain of HPV-18 helicase anb)(

the hexamer of SV40 helicase, which were used to geneztategynthetic hexamerd) The synthetic
hexamer after refinement against the CR-A hexamer from the final structure of BPV-1 E1 helicase.
Colours indicate (red) oligomerisation and (green) AAA-n@ons. The r.m.s.d. for €atoms between

the last three models were 536(synthetic and final models), 44 (synthetic and refined models) and
2.5A (refined and final models). The sixfold symmetry was sigaifity perturbed in the final hexamer.
Therefore, the rrm.s.d. between the refined and symmetfisaldhexamers was only 1A. (f) The
behaviour of MR for synthetic anaj) refined hexamers. The RF and TF steps are represented By plot
of RF/lo(RF) and CC, respectively, against the RF peak number.
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axis. Such an orientation of the hexamer was consistent thtfSRF and was considered as
a likely RF-solution. However, the best CC in the TF for thigentation was lower than for
other orientations and it seemed likely (and confirmed )ateat the correct TF solution was
suppressed by the packing constraints.

Therefore we assumed that the hexamer in the unknown steubd a slightly different
organisation and undertook refinement of the synthetic texanodel. The data up to reso-
lution of 4.5A were used for efficiency, but it was known from the previous tRals that the
orientation of interest had the first rank for the resolution-offs from 3 to 5A. During this
procedure four parameters were refined: three angles dgfinénorientation of the suburd
and the distance between the centre of sublir@hd the sixfold axis. The remaining five sub-
units were generated from subuAiby the sixfold symmetry. The target function was the value
of RF/o(RF) for the highest RF peak. Maximisation of the target fiomcwas performed iter-
atively using atcshscript. For a given current hexamer, eight new hexamerg wenerated,
in which the distance was incremented by A or one of the angular parameters was incre-
mented by+1°. MOLREPwas used to compute the RF for each of new hexamers. The values
of the target function, RIB{RF) for the first RF peaks were extracted from the log filese Th
new hexamer with the highest value of the target functiorabecthe current model in the next
iteration. The procedure was terminated when none of themedels gave an increase in the
target function compared with the current model. The refier@motated the subunits bydand
translated their centres of mass byAqFig. 2.5d). Using the refined hexamer, the behaviour
of conventional MR improved dramatically (Fig.5g). The refined hexamer (Fi@.5d) and
the hexamer from the final structure (F&5e) were very similar to each other and differed
significantly from the initial synthetic hexamer (F@5c).

Similar refinements were performed with the fourth and sttveeaks of the RF from the
starting model. The target functions was the value ofdRRRF) for the RF peaks closest to the
initial peak. The increase in the target function was sigaiftly less than in the refinement with

the first peak.

2.4.2 Concluding remarks

After the structure was solved it became evident why theudielfdR protocol with the synthetic
model failed, although the correct orientation was the firshe list of the RF peaks. The large
C* r.m.s.d. of 5.64 between the synthetic and final hexamers (FR5 and2.5) and larger
size of the former prevented the TF solution and, in pariGw proper functioning of the PF. On
the other hand, it is unlikely to be possible to solve a stmgctvith translational NCS without

packing constraints.
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It seems likely that the success of refinement using CRF wehegoto the following rea-
sons, (i) the presence of NCS constraints in the successinement protocol, (ii) additional
reduction in the angular resolution in the RF target (sglaéharmonics with largkare ignored
in the RF by default) and (iii) the absence in the RF targebaflcross-vectors, which may
result in false local minima. However, a general implemiéotaof such refinement does not
necessarily imply the use of spherical harmonics. For exanapjustment of the angular reso-
lution can be performed by refining the TLS parameters ofitjid groups. An improved rigid
body refinement program could be useful in cases similar todwscribed here and those in

which the adjustment of a multi-domain model is needed, dsdmext example.
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2.5 MR with feedback from the refined partial model

Structural studies of the hypothetical protein MTH685 fritra archaeoiMethanothermobacte-
ria thermautotrophicusvas part of a mini structural genomics project on RNA-bigdimoteins
carried out in the group of Dr. Fred Antson (YSBL) in collagtion with several other groups.
The protein was produced, characterised, crystallisedfam&-ray data were collected by Dr.
Chyan Leong Ng. Dr. Michail Isupov (University of Exeter)dahused the available X-ray data
and solved the structure (Lebedetval, 2008). A manuscript describing the structure is being
prepared by Dr. Chyan Leong Ng.

There are two three-domain molecules in the asymmetricafritie crystal. Flexibility of
the molecules prevented a straightforward structure ohetation despite the availability of a
closely homologous structure. A domain-by-domain searab tverefore performed alternated
with restrained refinements of partial structures, as peg@dy Bringer (1990). Furthermore,
the refined domains were the search models in the subsegeesta the MR. In effect, the
restrained refinements allowed utilisation of higher-haon data, which otherwise would not

contribute to the MR searches with less similar models.

2.5.1 Structure solution

The symmetry relations between structural elements (sibandomains) forming the asym-
metric unit are not necessarily obvious from the SRF or athethods. Moreover, there can be
several different types of structural elements. In suckesathe NCS-based protocols are not
applicable and the structure solution requires a standaedbg-one search with very incom-
plete search models. Two problems are usually encountartrdsi approach. Firstly, a minor
problem is the lack of contrast in the TF when positioningl#st few structural elements. The
major problem is that the RF is calculated only once for eaarch model, each representing
only a small fraction of the asymmetric unit (F@.6a). Even if the search model is adequately
modified, some of the correct RF peaks may remain weak owitlget@pecific configuration
of the interatomic vectors in the actual crystal structi8ach peaks are therefore absent in the
list of top RF peaks provided for the further TF search. Assaltethe corresponding elements
of the asymmetric unit are not positioned at all. If, howewepartial MR solution is found,
restrained refinement of the partial structure allows aratgdf the search model(s) and the list
of RF peaks (Fig2.6b).

This technique was instrumental in the determination ofdtystal structure of the hypo-
thetical protein MTH685 from the archaedhethanothermobacteria thermautotrophicukhe
crystal with unit-cell parametera = 683, b = 721, ¢ = 1468 A belonged to the space

groupP222,. X-ray data were collected to a resolution of A8The asymmetric unit contained
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two monomeric protein molecules with identical sequenadsch, however, were not related by
any point group NCS and, moreover, were in different confdioms (Fig2.6¢c). Each molecule
contained three domains. To the date of structure detetiminahe PDB contained a structure
of a homologous protein fromrchaeoglobus fulgidusiith a sequence identity of 50%, PDB
code 1p9qg. Because of the domain mobility (F2dsc), the target structure could not be solved
using the complete molecule as a search model. Thus, theeprabrned out to be not a simple
MR problem despite the high sequence identity. None of ttesipte search models were per-
fect, the complete molecule because the three-dimenssimdarity was too low and the single
domains because the completeness was too low.

The protocol presented in Fig.6(@) allowed MOLREPto find the correct MR solutions
for domain 1 from chairA and domain 2 from chaiB (steps 1 and 2 in Tabl2.3). However,
it was not obvious whether this partial model was correctfh@sorientation of domairB2
corresponded to only the 24th highest peak in the RF and #relséor the remaining domains
was unsuccessful. Moreover, this model could not be vadian the basis of connectivity
considerations, as the two found domains belonged to diifgrolypeptide chains.

In contrast to the standard protocol, the protocol inclgdiefinement of partial structures
(REFMAQ produced the complete model (steps 3—6 in T@uBp. Although the partial model
after step 2A1 + B2 was only about 30% complete, restrained refinement of tioidetper-
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Figure 2.6. Structure solution of the MTH685 proteina)(The one-by-one MR protocol in which the
RF is computed only once for each single-domain search mdleThe successful MR protocol with
two feedbacks, in which each new partial model is refined hatefore search models and lists of their
possible orientations are updated at each step, alonghgtpartial structure.cj Superposition of (red,
yellow) two molecules of MTH685 protein forming the asymnieeunit and (green) the homologous
protein Af0491 (PDB code 1p9q) fitted onto the second donshiawing that the MR structure solution
using the whole molecule as a search model is impossilule Efflarged superposition of the second
domains; red from chaiA of the final structure, blue from a refined partial structusataining two of

thehighestscore

ProA159

six domains and green from the homologue corrected acaptdithe target sequence.
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formed quite efficiently: most of the atoms moved closer wirtfinal positions (Fig2.6d) and
the r.m.s.d. for € atoms between domairsl in the partial and final structures decreased from
1.42t0 0.98A. This improvement completely changed the behaviour oRRelt turned out that
the correct orientation of domai® was not in the list of 200 highest RF peaks until the corre-
sponding search model was updated. The impact of the seavdb}l improvement on the TF
was not so significant. Additional tests showed that if theex orientation 0A2 were known,
the improvement of the search model would only cause a 15%ase in contrast. Neverthe-
less, step 3, in which the refinéd was used to finé2, was critical for structure determination.
Starting from step 3, the models were validated by the cdivitycbetween neighbouring do-
mains and by the decreaseRjee (Table2.3). It is likely that after step 3, when 50% of the
complete structure had been defined, it was already podsilsi@itch to searching for the re-
maining domains in the electron density using, for examBePTF (Vagin & Isupov, 2001)
implemented ilMOLRER

Step 1 2 3 4 5 6
Composition of fixed model

Chain A - 1 1 1,2 1,2 1,2
Chain B - - 2 2 12 123
Search model that gave

the best TF score 1 2 f2af 3 af
Refinement of partial structure

R 0.526 0.495 0.459 0.447 0.404 0.358
Riree 0.548 0.534 0.503 0.486 0.445 0.425

Table 2.3.The sequence of MR searches that led to the solution of the885Hbrotein crystal structure.
The composition of the models is given in terms of domainsmising residues 1-89 (domain 1), 90—
162 (domain 2) and 163-232 (domain 3).

fThe search model was taken from the refined partial struftone the previous step
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2.6 Substructure solution using NCS-constrained exhauste search

The structure and function of the portal protein from thegeh&PP1 was studied in the group
of Dr. Fred Antson (YSBL) in collaboration with several otlgroups and researchers (PDB
code 2jes; Lebedegt al, 2007). Dr. Margaret Krause (Max-Planck Institut fir Maléare
Genetik, Berlin, Germany), Professor Eleanor Dodson (YGBL. Fred Antson and | were
involved in the crystal structure solution and analysis. ddwptribution was the solution of the
phase problem by MR and analysis of the results and model.

The crystal structure was determined using a Hg-derivativé native data. The Hg sub-
structure was solved using an NCS-constrained exhaustarels with a CRF-target against the
anomalous differences. This method was first used by Dr. Rrgdon to solve the structure
of the TRAP protein (Antsoet al, 1995) and was invoked for this case because of the failure
of direct methods, probably owing to a low signal-to-noiagarin the isomorphous differences.
Essentially the same approach was used for the structurgasobf HCHL (§2.3), except that
in this case it was applied to substructure determination.

The X-ray study of the isolated 13-mer form of the portal piotrevealed the structure of
the tunnel loops, which interact with the DNA during the DNArtslocation. The asymmetry of
the tunnel loops in the functional dodecameric form of thegl@rotein was established and the
model of the DNA translocation was proposed based on a catibimof various data including
the results of the X-ray model fitting into the electron mggopy (EM) reconstruction of the

connector.

2.6.1 Background

The assembly of tailed bacteriophages and herpesvirusgs2(Ba) starts from the formation
of a procapsid with a portal protein embedded in one of thévevive-fold icosahedral sym-
metric vertices of the shell. At a later stage, a complex aused of the multisubunit terminase
assembly and concatameric phage dsDNA binds to the portaixvis form a DNA translocat-
ing molecular motor, which packages DNA into the capsid.afyn after concatameric DNA
cleavage and terminase dissociation a few other protemsttached to the portal to form the
tail of infective phage.

In bacteriophage SPP1, the molecular motor consists o€ threteins (Fig2.8a) — gp1,
gp2 (small and large terminase subunits, respectively)cggtd(portal protein) — and powers
translocation of the 45.9 kbp phage chromosome (Camathb, 2003; Oliveiraet al.,, 2005).
DNA translocation is fuelled by ATP hydrolysis; ATPase wityi is associated with the large
terminase subunit gp2. However, it is still not clear if thever stroke generated by gp2 pro-

tein applies directly to the DNA or to the portal protein, sig its structural rearrangement
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and DNA translocation. All components of the DNA-transliog motor possess distinct sym-
metries. For example, the capsid’s vertex and the backbbtie B-form DNA have five-fold
and screw ten-fold symmetry axes, respectively. In commibim tive herpesvirus portal protein
(Truset al,, 2004), the portal protein of bacteriophage SPP1 can ex&stacular assembly with
varying number of subunits (Lut al., 2001; Orloveet al,, 2003): it was found as a 13-subunit
assembly in its isolated form and as a 12-subunit assembénwiiegrated into the functional
viral capsid. According to the latest results, the smalniease subunit gpl forms decamers
with ten-fold rotational symmetry (Maria Chechik and Fredt#on, personal communication).
The large terminase subunit gp2 exist in a monomeric fornoiati®n, but the number of gp2
subunits and their orientations in the functional motoeadsly is unknown.

High-resolution EM reconstructions of the SPP1 portal girotvere available both for the
isolated 13-subunit oligomer @ resolution) and for the connector (£0resolution), an assem-
bly purified from the viral capsids consisting of the 12-mertal protein in a coaxial complex
with two other viral components gp15 and gp16 (Orleval., 2003).

Although in all species the portal protein is a central argkpsal component of the DNA-
translocating machine, the organisation of the moleculatomvaries. For example, in bacte-
riophage¢29, the motor consists of three coaxial macromolecularstitige portal protein, the
ATPase and the procapsid RNA (pRNA) acting as the substoat&TfPase binding (Simpson
et al,, 2000), while there is no evidence for the presence of pRNgther bacteriophages. This
motor generates a force of up to 57 pN, which makes it one ofrtbst powerful molecular
motors discovered so far (Smi#t al, 2001). Such a force is needed to pump the viral DNA
against the high internal pressure that increases as thei®siAcapsidated.

The available EM data showed that portal proteins of difieghages and herpesviruses all
shared a common turbine-like shape (Valpuesta & Carrasd@®@®4; Orlovaet al,, 1999; Trus
et al, 2004). However, they showed no detectable similarity ianacid sequence and exhibit
large variations in their subunit molecular masses, fong{a 36 kDa in the case of phag29
and 57 kDa in the case of phage SPP1. Thereforep28gportal protein, the only portal protein
for which the crystal structures had been available (Simg$@l., 2000; Guasclet al., 2002),
could not be used as a MR search model for solving the crysiattare of the SPP1 portal
protein.

The operation of the DNA-translocation molecular motor basn the subject of much de-
bate. The low-energy barriers to rotation of symmetry misfmiag protein rings relative to
each other led Hendrix (1978) to propose that DNA transionds accompanied by rotation of
the portal protein inside the capsid vertex. Different misad DNA translocation, all involv-
ing the rotation of the portal protein, were put forward dating the EM image analysis of the
SPPL1 portal protein (Dubet al, 1993) and the determination of the X-ray structure of#R6
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portal protein (Simpsomt al, 2000; Guasclet al., 2002). These models were based mostly
on symmetry considerations, as even the available X-ray plaivided no atomic-scale struc-
tural information about the most constricted part of therinal tunnel that would be in close
contact with the DNA during translocation: the tunnel loapshe ¢29 portal protein (residues
229-245) were either disordered in the native structuma@Sonet al, 2000) or missing in the

higher-resolution structure of mutant (Guasttal., 2002).

2.6.2 Crystallisation and X-ray data analysis

Diffracting crystals were obtained for the SPP1 portal @rotgp6SizA with the amino acid
substitution N365K. This mutation reduced the length ofamsidated DNA but did not affect
the DNA packaging process (Tavaresal, 1992). The crystallisation conditions were found
by Jekowet al. (1998) and optimised by Dr. Margaret Krause. The best dgystare obtained
using hanging-drop vapour diffusion. A solution contagqmg/ml of protein was mixed in a
1:1 ratio with the reservoir solution containing 20% PEG ,4000nM CaCb, 50mM HEPES
pH 7.6 and 10% glycerol, which acted also as a cryoprotectEim non-derivative crystals of
this mutant and the X-ray data from these crystals are furéferred to as native crystals and
native data.

The presence of a single cysteine residue (C55) per subuggested that the mercury
derivative is a good candidate for isomorphous replacembasing. The crystals of Hg&l
derivatives were obtained by cocrystallisation, in whidfedent amounts of HgGlwere added
directly to the protein solution. X-ray data from severdiveacrystals and from several HgCl
derivative crystals were collected at 100K using synchbrotradiation at the ESRF, beam-
line ID14-4. The data were processed usiBNZO and SCALEPACK(Otwinowski & Mi-
nor, 1997). Some characteristics of the three best crysseld in structure solution are presented
in Table2.4.

Table 2.4 shows that the increase of the concentration of Hg@Imother liquor further
improves the resolution of the diffraction data, althougtauses increase of non-isomorphism.
This observation suggested that the derivative crystallkiptained with lower concentration
of HgCl, was more suitable for substructure determination, butdkg isomorphous derivative
Hg-2 was a better candidate for model building and refinement

The confirmation that the crystals Hg-1 and Hg-2 were truévaiéives came from the SRF
that was computed for the observed native structure facéord for two sets of isomorphous
differences between the derivative and the native stradagators (Fig2.7a). The SRF from the
observed structure factors clearly revealed peaks adoguiatr thirteen-fold NCS (sectiog =

27.7°) and for interaction between this NCS and crystallogragliimmetry (sectiory = 180°).
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Similar features were expected for the SRF from isomorpluiffisrences provided that these
differences were owing to regular mercury binding and ndy tecause of non-isomorphism
and measurement errors. The differences between Hg-1 dind structure factors showed all
the expected features, a clear peak in the segtien27.7° and a ring of smeared peaks in the
sectiony = 18C°. In the case of differences from the less isomorphous derv&lg-2, the
peaks in the section = 27° were conserved while the ring of peaks in the secjos 18(°
partially disappeared. The latter observation can beddeas the negative control of what had
been observed for the derivative Hg-1 and is therefore ddurtonfirmation of Hg binding.
Indeed, the peaks at = 27° were defined by intra-oligomer self-vectors and their pnese
mostly depended on the similarity between oligomers anil tr@ntations in the two crystal
forms. On the other hand, the peaks in the sectioa 18(° were defined by cross-vectors
between crystallographic-symmetry related oligomersthadnatch between such cross-vectors
in two (approximately) isomorphous crystals would quickinish with relative changes in the
unit-cell parameters (Tab@4).

The anomalous differences were measured for both Hd@&iivatives under consideration,
but showed no SRF-patterns corresponding to the 13-fold &K&Sor its interaction with crys-

tallographic symmetry.

2.6.3 Solution of the substructure

Despite the presence of the true isomorphous differenigesubstructure solution could not be
obtained by automated Patterson search or direct methad 8siveor SHELXS Unsurpris-
ingly, attempts to solve the Hg-substructure using anousatiifferences failed as well. There-
fore a constrained exhaustive MR search was attemptedhwi@s earlier used by Antsat al.

(1995) for substructure solution of the derivative crystahe TRAP protein 11-mer.

Data set Native Hg-1 Hg-2
contents of HQGl (mM) - 0.5 2.5
Space group C222 C222 C222
a(A) 173.5 173.4 174.3
b (A) 222.4 221.7 221.4
c(A) 419.8 419.7 421.9
Resolution A) 100-4.1 40 -3.7 40-3.4
Rierge (%) 11.0 9.6 10.4
Riso (%) - 15.3 25.1

Table 2.4.Data sets used for structure solution of SPP1 portal protein
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A series of search models was generated. Each model camtedrieg atoms located around
a circle with a step of 27° (Fig. 2.70). An additional carbon atom was placed on the axis of
the circle but outside of its plane for the MR program to beawstfused with an ill-conditioned
inertia matrix, which would occur for a flat model. The radafishe circle varied in the series of
the search models from 10 to $0with a step of 1A. Every model was submitted to a rotation

Fobs Diso Diso
(native) (Hg-1 — native) (Hg-2 — native)
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Figure 2.7. The Hg-substructure solution of the portal-protein deiveecrystals. § The SRF computed
for the native data (left) and for the isomorphous diffeenbetween the native data and the derivative
data Hg-1 (middle) and Hg-2 (right)b) The search model for exhaustive search composed of 13 myercu
atoms located on the circle of variable radiRis(c) The plots of the maximal value of the CRF against
R computed for the isomorphous differences between theadtita and the derivative data Hg-1 (thick
line) and Hg-2 (thin line).
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run of AMoRe(Navaza, 2001) against isomorphous differences from theadize Hg-1 and the
best CC was plotted against the radius of the Hg-cycle (tiekin Fig.2.7c). The CC peaked
at 32.7% for the 41.@ radius model. The orientation of the Hg-ring correspogdimthis peak
was consistent with the SRF.

An identical search was performed against isomorphousrdifices between the less iso-
morphous derivative Hg-2 and the native data (thin linesign E7c). Again, there was a peak
atR = 41A corresponding to the correct model in the correct oriématHowever, the contrast
in this case was much lower, so the results of this searclealould not be convincing enough.

The background of the plots in Fig.7(c) decreases with the growth of the Hg-circle radius.
This is because the radius of integration in the RF was natteahbut was adjusted to be linearly
dependent on the Hg-sphere radius. Thus the integraticersjpincluded cross-vectors between
Hg-atoms and their first and second neighbours only (thgrat®n radius was about half the
radius of Hg-circle). With this approach, the signals frdhcarrect models (the case of multiple
Hg binding) but not the noise would have been equalised. Towol with large constant
integration radius would be significantly slower, but woptésumably result in a constant level
of noise and higher level of signal coming from more crosstes.

The model with the Hg-circle radius 4A and 30 best orientations for this model found
during the RF search against Hg-1 isomorphous differencae welected for the TF trials.
The TF search usinéMoReand Hg-1 differences gave eight equivalent solutions withGa
of 13.5% (orientations 5-12). The second best CC was 9.9%nfations 1-4). The found
solutions were consistent with the SRF, had reasonabl® @y7distance between symmetry
equivalents and were the best among the TF peaks for the s@neation in terms oR-factor,
CC of structure factors and the height of the TF peak. Thesetbere were no doubts that the
correct substructure solution was found.

Thus the NCS-constrained exhaustive search with the CRJEttaroved to be successful
for both the protein oligomer rebuildingZ.3) and substructure solution. An important feature
of this approach is that the orientations of the NCS axes aosvik, but corresponding con-
straints are relaxed during the search and this informasiarsed for validation only. In the
particular case under consideration, the validation osthestructure model was important, as it
helped avoiding time-consuming attempts at phase imprenestarting with a false substruc-
ture model.

After the portal protein structure was solved, another wethf substructure solution was
successfully tested, in which all possible NCS constraivise applied during the exhaustive
search. Two parameters were scanned against the TF téigétgtcircle radius and the position
of the reference Hg on the circle. This was the analogue afigtdod used for structure solution

of TPx-B (52.1). Had only the Hg-2 derivative been available, the exhaesearch with the
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RF target would not be sufficiently convincing to select tlstbsubstructure model and this

two-dimensional search should have been invoked.

2.6.4 Structure determination and analysis

The phases to 34 were estimated using X-ray data from native crystal ant betivative crys-
tals in an iterative procedure including heavy atom refimgimealculation of expected phases
and 13-fold averaging. Heavy atom refinement and phaselattms were performed using my
own program, which treated structure factors from the ayemtanap as a prior allowing implicit
phase combination. The map averaging was performed nsamyot The model was built us-
ing QUANTA(Accelrys) and refined usinBEFMAC(Murshudovet al,, 1997). Initially, only
the a-helical region around the tunnel was visible in the elattdensity map. This was built
as polyalanine segments. The first model constituted 44 f6teccomplete structure and the
directions of some segments were incorrect. Several roohfinement with NCS restraints
followed by rebuilding into the 13-fold averaged map allowtbe correction and expansion of
the model. Owing to the limited resolution, TLS paramet®&¥inf et al,, 2001) but not individ-
ual atomicB factors were refined.

The final model was refined against the A.4ata set of the derivative Hg-1 ® = 28.8%
andRsqee = 31.9%. A complete subunit of the portal protein contained 5G8duees, of which
28 N-terminal and 36 C-terminal residues were not includethé final atomic model and the
segment 170-238 located in the peripheral part of the olggomwas partially modelled by a
30-residue polyalanine segment which was not docked i®ed¢quence.

The 13 subunits of the portal protein are arranged aroundaeh&al tunnel in a circular
assembly with an overall diameter ©f165A and a height of~ 110A (Fig. 2.8b). Helixesa3,
a5 anda6 form the core of a single subunit (Fig.8c). Helix a5 is connected ta6 by tunnel
loop (residues 345-359) called so because it protrudeghstéunnel and the belt formed by
these loops defined the most constricted area of the tuntielting diameter of 2A in the 13-
mer. The loops from adjacent subunits did not make any dirgdtogen-bonding interactions
with each other but made extensive van der Waals contadtst#idlised their conformation and
position in the tunnel. The most distinctive feature of tietal protein is that the long helix6
contains a 4%kink. This unusual conformation is stabilised by interas with the C-terminus
of helix a5, which is approximately perpendicular 4®&. Two direct hydrogen bonds (A358—
N421 and G360-E424) linking the tunnel loop and the N-teuminf a6 to the C-terminal
domain of the subunit further stabilise this kinked confation (Fig.2.8d).

The three-helical core and some other features of the tgpadowe conserved in the por-

tal proteins of bacteriophages SPP1 a@9. This similarity provides additional evidence for
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(gp6)
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Figure 2.8. DNA translocatiorvia the SPP1 portal proteina) Bacteriophage SPP1 assembly. Double-
stranded DNA is translocated into the procapsid throughptbrtal protein, which together with the
terminase, forms a molecular motor. After termination ofkzging, head completion proteins (gp15
and gp16) bind to the portal protein forming a head-to-tailreector. Tail attachment to the connector
yields the infective phage particle. Before and after assion with the procapsid the portal protein
exists as 13- and 12-mer, respectivdy X-ray structure of the SPP1 portal protein. Ribbon diagram
show the portal protein 13-mer along and perpendicularstd ®-fold axis. €) Single subunits of the
SPP1 portal protein. The B-form DNA (van der Waals model)asifioned along the tunnel to show the
relative size and match between the tunnel loop and the rgegawve of the DNA. The relative position
shown is that expected between the DNA and the “discharggulirst 3 of the 12-mer portal protein in
a functional complex.d) Two extreme states of the tunnel loop: (cyan) observederctiistal structure
and (red) obtained by modelling a straightened conformatiohelix a6. The residues stabilising the
kinked conformation of this helix in the crystal structure ahown in ball and stick.ef The proposed
arrangement of the tunnel loops (ribbons drawn along theola&in atoms of residues 350-360) in the
complex of the dodecameric portal protein with the DNA (kaaild stick). Loops occupying the three
states inside the major groove are coloured red, magenteyamd while the remaining nine loops are in
dark blue. The red and cyan states are the same d$.in (
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the proposal that the dsDNA tailed bacteriophages divefged a common ancestor, which
was the root of the lineage formed by tailed phages and hdarpsses (Bamforcet al, 2005).
Equally this conservation suggests that the mechanism @& Dahslocation is similar in all
these systems.

The application of normal mode analysis (NMA) to the MR stmwe solution was discussed
in §1.1.11 In this study, the NMA-server EINemo (Suhre & Sanejouarif)4) was used to in-
vestigate possible conformational changes in the portaéjr. One of the low-frequency modes
corresponded to the movement of the loops along the tunnelaad included the conforma-
tion in which helixa6 was straightened and the end of the loop moved by abdutidwn the
tunnel, the distance corresponding to translocation of ltame-pairs of the DNA (red ribbon
in Fig. 2.8d). This conformation breaks the hydrogen bonds A358—-N42i1GB60—-E424, but
gains fivea-helical hydrogen bonds, which are otherwise disruptechbykink of a6.

Further inspection of the structure showed that the stractaotif comprisinga’5 — tunnel
loop —a6 could function as molecular lever, in which a slight axtaftof helix o5 is associated
with a much larger axial shift of the N-terminal end of heti® and the tunnel loop, the latter
making shape matching interaction with the major groovénefttanslocated DNA (Fig2.&c).
Mutagenesis and biochemical data (Isiétcal., 2004; Oliveiraet al., 2006) suggested that the
structural organisation of this motif is crucial for DNA trslocation. In particular, five single
amino acid substitutions in the tunnel impair DNA packagirichese include two mutations
of V347 underpinning the kink in the helix6 with its side chain (Fig2.8d). Its mutation to
alanine (smaller side chain) or methionine (larger sidemhepparently alters the kink in helix
a6 and therefore abolishes the DNA packaging. The above datajell as the conservation
of a3, a5 anda6 in two known portal protein structures (phage29 and SPP1) suggested
that the signal or force exchange between ATPase and DNAI cmubccomplished through the

structural motifa3 —a5 — tunnel loop 6.

2.6.5 Conformational asymmetry of the portal protein

During the structure solution the NCS is generally treatedraexact symmetry and the infor-
mation on the NCS operations is particularly useful for iiun of the dimensionality of the
search space. From the biological point of view, of inteegstboth the overall mode of the as-
sociation of subunits into oligomers and the conformatieaaability of subunits. In particular,
the conformational and atomic-scale asymmetry gives aghingto functioning of the motor
proteins composed of several identical subunits (as indse of E1-helicasé?.4).

The 13-mer of the portal protein in the crystal structure wgsimetric. No significant

conformational differences between refined subunits weteatied. Furthermore, the omit map
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showed no interpretable density that would not be accoufateth the model. However, the
docking of twelve portal protein subunits into EM map of treddcameric connectof4.6.1
Orlovaet al, 2003) showed that the tunnel loops forming symmetric lmethe 13-mer would
necessarily deviate from this symmetric arrangement irattiee dodecameric assembly.

The fitting into the EM map was performed by Alexei Vagin usBPTF (Vagin & Isupov,
2001) and NCS-constrained rigid body refinement, both impleted inMOLRER The pseu-
doatomic model of the portal protein 12-mer revealed reasienintersubunit contacts except
for the C-terminal domain and the tunnel loops. Dissectinggits into several rigid bodies and
further refinement restored acceptable contacts betwetenn@ral domains, but not between
loops.

The minimal diameter of the tunnel decreased b)&lﬁh the transition of the portal protein
from 13- to 12-mer, a substantially greater contractiomthaimple scaling down by a factor
12/13. The reason for so large variation in the tunnel diamegs that the dimensions of the
two oligomers were defined by inter-subunit contacts in tlea deparated from the tunnel axis
by about 50A. As a result, the tunnel in the 12-mer was too narrow (vanwleals diameter
~ 18 ,&) to accommodate the B-form of the DNA (van der Waals diamete23 A) without
clashes.

The clashes between neighbouring tunnel loops and the toewé&unnel in the symmetric
pseudoatomic model of 12-mer suggested that actual steuofudodecameric portal protein
was asymmetric, at least in area of the tunnel, with flexibtgplconformations. Conformational
variability of the tunnel loops was supported by severakptbbservations. These included
weak electron density for the tunnel loops in the EM recartsions of both the dodecameric
SPP1 connector and the dodecamer®® portal protein embedded in the procapsid (Morais
et al, 2005). Similarly, in the crystal structures of the 12-suibassembly of the)29 portal
protein (Simpsoret al, 2000; Guasclet al., 2002), amino acid segments 229-245 that could
form tunnel loops were not observed in the electron density.

The mutant of SPP1 portal protein with truncated C-termilzathain was found to form 14-
mers and the crystal structure of this mutant has recenty kelved (Joanne Turner and Fred
Antson, personal communication). The extrapolation ofthe and 13-mer structures to the
12-mer showed similar clashes and the same diameter ofrtheltas the pseudoatomic model.

The structure of the tunnel loops observed in the X-ray sirecof the 13-mer and relative
position of subunits in pseudoatomic model of 12-mer imgdasteong constraints on possible
organisation of the portal protein complex with the DNA. Adebof the complex was therefore
generated, in which unfavourable interatomic contactewaeoided (Fig2.8e). Subunits 1 and
3 were assigned the conformations shown in Bi§d). The intermediate conformations of the

remaining ten subunits were modelled by linear interpoiatiThe axis of the DNA was slightly
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shifted relative to the axis of the portal protein, so thentldoops of the subunits 1, 2 and 3
sank into the major groove of the DNA as shown in RA¢(c) for subunit 3. During the active
event, tunnel loops 11 and 12, which are initially outside nfajor groove, are forced to slide
between adjacent phosphates into the major groove and thegoication between the active
subunit of the ATPase and the active tunnel loops is accaimgdi vian3 — a5 as mentioned at
the end of§2.6.4 After the active event, the system relaxes into an energynmim, in which
the individual states of subunits circularly permuted amel DNA is translocated by two base
pairs. According to measurements by (Gi@l., 1987; Moritaet al., 1993), one such transition

occurs per one ATP hydrolysis event.

2.6.6 Conclusion

An NCS-constrained exhaustive search with the CRF targstusad for the Hg-substructure
solution in the course of determination of the SPP1 portatigdn crystal structure. This method
was used because the substructure could not be solved byatetb direct methods.

Two structures of the bacteriophage SPP1 portal proteire wletermined and analysed,
the X-ray structure of the isolated 13-subunit form and teeudloatomic structure of a 12-
subunit assembly derived from the EM reconstruction. Tlst fiefines the DNA-interacting
segments (tunnel loops) that pack tightly against eachr ébnming the most constricted part of
the tunnel; the second shows that the functional dodecarsiate must induce variability in the
loop positions. Structural observations together withngetical constraints dictate that in the
portal-DNA complex, the loops form an undulating belt thet &ind tightly embraces the helical
DNA, suggesting that DNA translocation is accompanied byexikban wave of positional and

conformational changes propagating sequentially aloisgoit.
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3 Twinned structures

Geometrical classification of twins and intensity statstin twinned crystals are discussed in
the introduction §1.2). In this chapter, the geometry of the crystal lattice arg ititensity
statistics in twins are studied in their relation to NCS.

It is known that if the NCS and twinning axes are aligned, tti@ncorrelations between
NCS-related reflections affect the distributions of intees and their differences used in twin-
ning tests. For handling such data | first restate the equafior intensity statistics in a more
convenient form §3.1) and then derive theoretical distributions for two ideaticases. In the
first case, the twinned structure contains an untwinnedudiare with higher crystallographic
symmetry §3.1). Such a situation may, for example, occur in a crystal doimg larger dimers
complexed with smaller monomeric proteins. The second gader consideration is an OD-
twin of type 1/B (§3.4).

The second section of this chaptgB.@) presents the analysis of the PDB, in which the cases
of twinning were revealed and classified in terms of the pres@r absence of interfering NCS.
This section highlights the problem of incorrect space grassignment and, in particular, the
problem of false-positive twins.

The last three sections present three examples of twinnectstes with different relations
between twinning and NCS. In the first and the second examgteention is paid to the struc-
tural nature of the lattice constraints that make the twigrby metric merohedry possible. In
the second of these two examples, the OD-nature of the tryatashown to be responsible for
both the lattice constraints and the alignment of the NCSwairdaxes. In the third example, the
OD-nature of the twin by reticular merohedry defines thetia@icbetween alternative lattices.

In all three cases | contributed to structure solution. Reapolved in the projects are

acknowledged and related papers are cited in corresposduigns.
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3.1 Intensity statistics in the case of correlated structue factors

In this section, the statistics that are used in twinnintstase derived for the following particular
case of twinning by hemihedry. Two individual crystals eg@nted by normalised structure
factorsf; and f, possess a common substructure represented by a structimeffa
fi="fo+20
(16)
fo=fo+4
Equation (6) assumes an agreement between the origins in the strudtuaesl f,, so the two
copies of the substructurg overlap (if extended by crystallographic translationg)islalso
assumed that the substructufgsandA, do not contain complete translated copiedgf
In the hemihedral case under consideration the set of dgoivlin operations includes a
twofold rotationo;. The twin operatioro;"can be assigned a translational component to become

a pseudosymmetry operation fty. The action ofo on

f=(f, fo)" (17)
is written as
. 01
6f = f. (18)
1 0

Accordingly, ¢; is further referred to as either NCS operation or twin openatiepending on
the context. When it acts on structure factors, it is an efgméthe pseudosymmetry space
group of fo. When it acts on intensities, its translational compongittactive and its rotational

component is the twin operation.
3.1.1 Twinned intensities
Let o1 anday be relative volumes of individual crystals,

a1+ ar =1 (19)

Typically, the smallest ofi; andas is denoted as and is called the twinning fraction. In some

equations, it is convenient to use another parameter,
B = a1 — ap. (20)

Thus,aq = ap = 1/2 and = 0 correspond to perfectly twinned crystal afid= +1 corre-
spond to a single crystal in one of two possible crystallpgi@a orientations.
The squared modulif;|? and | f,|? of the two components df are the intensities of the

different individual crystals. Both intensities contribuo the total intensity,

Z = aq|f1? + ap| 2|2, (21)
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The operationo;” (18) permutes structure factors of twin-related reflectiond, artcordingly,

intensities of individual crystals,
GZ = au| 2 + ag| f1 ]2 (22)

Of particular interest are the mean of two intensities eeldty the twin operationz’, and
the difference between the two intensities representegl heits half valuez”,
Z+6Z  |h]P+]|ff?
2 2
_Z2-6Z _ TP [R
=3 5

In a perfect twinz’ = Z andZ” = 0. Rotation of a twinned crystal by the twin operation does

zZ =

(23)

not change&Z’ and changes sign &".

The random variablé,

(24)

is a more convenient representation of the difference atvwo intensities. Firstly, it is inde-
pendent of the overaB-factor. Also, it is positive and therefore has, in genesalpn-zero first
moment, which is a preferable statistic compared to therbomoment, as it is less sensitive to
experimental errors. It is also important thtis a sufficient statistic for the twinning fraction
« in the ideal model of twin{1.2.4) and is likely to remain a “good” statistic in the presence of
various factors perturbing the ideal model.

The experimental distributions and moments of random lbkesx andH are used in perfect
and partial twinning tests, respectively, and are compuaiidtthe theoretical predictions. The
theoretical distributions oZ andH for uncorrelated structure factors were discussed in the
introduction, in§1.2.3and§1.2.4 respectively. The distribution of these variables forraige

correlated structure factors are derived and discussedtsiiséction.

3.1.2 Examples

The PDB entries 1ewy and lirm present examples of this typgviohing. In the first case
(Lewy; Moraleset al,, 2000), the asymmetric unit of the space gré&%2,2; contains a dimer

of ferredoxin-NADP+ reductase (A) complexed with a singlel@cule of ferredoxin (B), sdp
corresponds to the4;2,2-substructure formed by molecules A, wher&asndA, correspond

to two different orientations of thB2,2;2;1-substructure formed by molecules B. In the second
case (lirm; Sugishimet al., 2002) the asymmetric unit of the individual crystal(or ;) with

the space group symmetBa8, contains three molecules of apo-heme oxygenase-1. Twaof th
three molecules are attributed to the substructymeith the space group symmetB3,21 and

the third molecule belongs iy (or Ap).
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The operationo;”can be chosen as follows: any of two diagonal two-fold rotatf the
P452,2 space group ofp (the first example), and any of two-fold rotations of #&21 space

group of fg (the second example).

3.1.3 Joint distribution of structure factors

Letp, 0 < p < 1, denote the correlation between normalised structuter&é, and f,. This is
a positive real number because of the common substrugjukgsing vector notationsl{), and

£ for the expected value, the covariance matrixffar defined as follows,

meeirT = [ 17 (25)
p 1

It is further assumed thatis the same for all reflections. This corresponds to exactssiny

of fy relative to the NCS operation. In reality, the NCS is approximate apddecreases with

increase of the resolution. Nevertheless, constasta good approximation especially because

only low and medium resolution data are to be used in twint@sgs to avoid the effect of

experimental errors(.2.3 Fig. 1.2). It will be also shown ir3.4 that the model with constant

p works even if the actual is an oscillating function off.

The assumption2b) is not always justified. For example, in the case of pseadstation,
even the intensities from the same resolution shell shoatdor assumed to have the same
expected values. Formal analysis of this special case igolotded in this thesis, although a
related example is presented beld.@). Also, the normal distribution of is not always a
good approximation for anisotropic data, although mosi@nbpic cases can be treated using a
reduced resolution range for twinning tests.

The complex vectof can be represented in terms of its real and imaginary padsadb,
real vectors,

f=a+ib (26)

The joint distribution ofa andb is normal with zero mean and variance-covariance matrix de-
fined by @5),

1 Txpg—1
p(a,blp) = 2 M| exp(— "M~ ) (27)
BecauséV is a real matrix,
1 T —1s  pTpa-1
p(a blp) = M exp(—a' M ta—b'Mb), (28)

that is, the vectora andb are identically distributed and mutually independent.
This is a standard statistical model for the structure factp and f, from two similar but

not identical structures containing an equal number of atdrhe structure factory and f, are
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identically distributed and the correlation between them iThe propertyp > 0 is not essential
for the intensity statistics and it i that matters. All equations of this section are valid for
|p| <1, so they are applicable for the case of an OD-t@B14), in which p may be considered

as the cosine function of indéx

3.1.4 Moment generating function forZ’ and Z2”

The moment generating function (MGF; Stuart & Ord, 1994hefitandom variableg’ andZ”
is defined as follows,

£Z’Z” (t/,t//) — g(et/z/+t//Z//) (29)
The calculations below are performed in terms of the randeniorsa andb distributed ac-

cording to @7). Equations 23) are transformed into vector formk7) and substituted inta2Q)

to give
1
YA 2 2 T
Lzzn(t' ") = M //RZ da /deb exp( —f'*Af), (30)
whereM is defined in 25) and
t/ t” 0
A:M—l—% tp R (31)
0 t — gt
Explicitly,
1 1
Lyzn(t' 1) = (32)

CJAM] 1t L1 - 22— pard)
The MGF @9) can be expressed in terms of joint probability distribotidensity ofZ’
andz”,

Lzzn(t', ") = / / Pz (Z,Z2") e'% e dz'dz" . (33)
and the probability distribution density can be restoretbbgws,
1 ico oo
pzzr(Z',2") = i) / / Lozt 1) e e Z dt'dt”. (34)

—ioco —ico

In the last two equations, physically impossible pairsZzbfindZ” are assumed to have zero
probability. In 34), the integral with limits—ico andico denotes an integral along the imag-
inary axis. Equations3@) and @4) are direct and inverse Fourier transformations in terms of
parameters’ = —it’ and7” = —it”. In the general case, the MGF is therefore defined for
imaginaryt’ andt” and, in special cases including the one under considerdtiene exists an
analytical extension of the MGF in the entire complex planee reason why the MGF transfor-
mation is used instead of Fourier transformation is a mioowenience of the MGF being real
for realt (if defined) anch-th mixed moments of the random variab®sandZ” being equal to

then-th mixed derivatives of the MGF (without the coefficiefij.
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3.1.5 Moment generating function forZ’ and |Z"”|

The definition of the joint MGF of random variabl& and |Z”| and its explicit expression

through the density function of random variabEEsandZ” are as follows,

Ly zn(t' 1) = E(e"ZH1ZT) (35)
and -
Lz,1z0(', ") / / Pz (Z,Z") e'Z V2 dz!dz”. (36)

The substitution of34) and integration over’ gives the following equation,

’CZ’ |Z”|(t t// — / LZ’Z”t t dt/ t” 1z tZNdZ// (37)

—ioo

To integrate oveZ”, this integral is split into two integrals, over positivedamegativeZ”. The

latter two are equal becaugg. (t',t) defined in 82) is a symmetric function of. Therefore,

,CZ/ |Z//| t t / LZ/ZN t t dt (38)

—ioo

t//

As follows from 32), the integrand in 38) has three special points for the varialtle If
R(t") < 0, there is only one special point fét(t) > 0 andvice versa The integration path
is locked around this unique special point to get the foltaywexplicit expression for the MGF

of interest,

1 1
VIt (ut)2 /1Tt + (ut)2 — p|BJt"’

L1z (' ") = (39)

where

= 3Vi- 2. (40)

2
As follows from @5), the joint moments of’ and|Z”| are obtained by differentiating this MGF.

In particular, the first moments,
£(Z)=1 (41)

and
E(Z")) = |ﬁ|\/l 2, (42)
and the following combination of the first and second moments
2
€<(E%—Z€GZ®)>::%6%1—pﬂ (43)

are used in the next section to estimate fafactor between twin related intensities and the

standard deviation of this estimate.
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3.1.6 Perfect twinning test

The distribution of normalised intensiti€%Z) in the absence of the correlation between twin
related structure factors is discussed in the introdudfi@r?.3. This is the case fop = 0. In
this subsectionP(Z) is derived and analysed for the general case #f0.

As follows from @23) and @9), the MGF ofp(Z) can be obtained from the MGF pfZ’,Z"),

L7(t) = E(e'%) = E(eFF2D) = Lazn(t,1). (44)
From 32),
1
where

1-32=01-p)1- 8. (46)

Equation 45) defines a one-parameter family of probability distribotiminctions. The nor-
malised intensities are therefore distributed identycdr all pairs ofp and corresponding to
the same value of and neithep nor 3 can be identified from single experimental distribution.

Effective twinning fractionsyy andas are defined by similarity with1©) and 0),

a1t+ax=1
. (47)
a1 — o0 = 3.
If p=0, thenB = (3. Hencea7 = a3, &z = ap and @) is rewritten as follows,
- 218 — & 775
P(Z) 1 a1 EXF( /Ozl) (%) exp( /az) . (48)

a1 — Q2
Becauselz(t) and, accordingly?(Z), depend on a single parametér,equation 48) is valid
for any value ofp. Of course,p(Z) can also be directly obtained from4) and then integrated
to give @48).

For a single crystal one of; anda; is zero and thereforg@? = 1. If 6, is in fact a crystallo-
graphic operation thep = 1. In both case13§| = 1 and one ofv] anday is zero, and equation
(48) reduces to
P(Z) = 1—exp(-2). (49)

This is a reference distribution for untwinned intensities
The cased = 0 can only occur for uncorrelated structure factgrs< 0) and only if the
crystal is a perfect twind = 0). In this casex; = &, and the singularity should be resolved in

the denominator of48) to give

P(Z) = 1— (1+ 2Z) exp(—22). (50)

98



This distribution is used as a reference distribution farfgatly twinned intensities. This is a
valid reference only for the hemihedral case without catieh.

Then-th moment of the distributioR(Z) equals to ther-th derivatives of the MGF45) at
t = 0. In particular, the first moment equals one, as it shouldob@drmalised intensities, and

the expression for the second moment is as follows,

m2
£z = 30 = 22 (51)

It is common to plot the experimental distributi®¥Z) in the range oZ from 0.0 to 1.0. On
the other hand, the second moment mostly depends on thibulistn of largeZ. Therefore,
with this style of presentation, the plot of the distribatiand the plot of second moments supply
independent information.

Fig. 3.1(a) presents the family of distributior(Z) with variable 3 defined by equation
(48). Fig. 3.1(b) shows the second moments of these distributions accotdieguation $1),
the assumption of constant correlatiprbeing indicated by the independence of the second
moments on resolution. In both plots, the limiting linesresgent the limiting cases of single
crystal (top blue line) and perfect twin (bottom red ling); Which equations49) and 60) are
valid, respectively.

The family of the curves in Fig3.1(a) is one-parametric, so none of the distributions except
for the above limiting cases of untwinned and perfectly tvéid data allow an unambiguous
evaluation ofp and3. For example, the second top line in F&1(a) corresponds to a partial
twin with the twinning fractionae = 0.067 (3° = 0.75) and uncorrelated structure factors
(p = 0), or to a perfect twin withe = 0.5 (6 = 0) and partially correlated structure factors
(v%2 = 0.75), or to any of the intermediate cases with= 1 — (1 — p?)(1 — ?) = 0.75.

In theory, the values g and 5 can be restored using artificially twinned data, for which
# = 0 and hencep = |B|. This procedure can be formally viewed as findimgising the
distribution P(Z’) of symmetrised intensitied’ (23). Oncep is known, 3 can be found from
the distributionP(Z) of intensities in the original data. The main disadvantaigihie variation
of the perfect twinning test is that the twin operatignniust be known. This is a limitation
from the original aim to provide a twinning test which does remuire knowledge of the twin
operation and is suitable for incomplete data.

Originally, Rees (1980) proposed to use the experimensatilolition P(Z) to estimate the
twinning fraction. In most practical applications, thisttés only necessary to establish the
presence of twinning to avoid errors with the space groumas®gent. With such relaxed re-
guirements to the perfect twinning test any correlatiomieen structure factors is less critical.
It is sufficient to establish a trend in the experimentalriistion toward the theoretical twinned

distribution. In this context, the most characteristictdiea is the behaviour d?(Z) at smallZ.
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It follows from (48) and @9) that in the untwinned case this behaviour is linear, whileninned

case it is quadratic,

2
_ 3 3

; (52)

P(Z)

P(Z) =Z+ 0(Z?) 18] =1

This difference is clearly seen even for quite a small eiffedwinning fractiona™= 0.07 (the
second top line in Fig3.1a). Because of this quadratic behaviour at srdalihe twinnedP(Z)
is often referred to as “sigmoidal” distribution. This feet emerges even in the presence of
pseudotranslation, when the experimef@l) may be very different from the distributions in
Fig. 3.1(a), and when such quadratic behaviour may be the only sign ioihing in standard
implementations of twinning tests. It is important thasthriterion of twinning remains valid
for p # 0. However, it needs to be underlined that although attradtecause of its generality,
this criterion relies on the accuracy of weak intensitied ean only be used for well measured
data.

Interestingly, the magnitudgsand g contribute toB in an identical mannerg), although
their meaning is exactly opposite in terms of correlatiotween related intensitieg: = +1 and

(8 = 0 correspond to 100%-correlation, whije= 0 andg = +1 result in the minimal possible

0.6 3
—~ 2‘
N &
T 03 N
1<
0.01 - ' ' 0
0.0 0.5 1.0
Z Resolution
(@ (b)

Figure 3.1. Perfect twinning tests in the case of correlated structactofs.

(a) The theoretical cumulative distributions of
(b) The second moments d@f

The colours red to blugia magenta correspond to-1(1 — p?)(1 — 3?) in the sequence 0.00, 0.25, 0.50,
0.75, 1.00p is the correlation coefficient of structure factofs= 1 — 2« anda is the twinning fraction.
Accordingly,

(i) red line corresponds to perfect twin & 0.5) and uncorrelated structure factops= 0),

(ii) in the intermediate casesdepends op and varies in these ranges: 0.25-0.5, 0.146-0.5, 0.067-0.5
(iii) blue line formally accounts for two cases,= 1 (higher point group symmetry) arnd= 0, in both

cases data are untwinned.
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correlation. Accordingly, the correlation of structuretfars and the correlation of intensities
owing to twinning produce opposite effects B(Z) (Fig. 3.1). If the data are twinned, then the
higher the correlatiop, the smaller is the apparent twinning fraction if the damassumed to
be uncorrelated. In other words, any correlation betweean-telated structure factors reduces
the contrast of the perfect twinning test.

This property of the perfect twinning test may be confusingsome circumstances. For
example, an erroneous assignment of too high crystal symirisequite likely in the presence
of strong pseudosymmetry. Such errors result in “overmrgata, which in theory can be
identified using a perfect twinning test. However, it would incorrect to expect the ideal

statistics of perfect twin in this case because ef 0.

3.1.7 Partial twinning test

The H-test, a partial twinning test is based on the experimentaiwative distribution oH
defined in 24). The case of uncorrelated structure factgrs=(0) is discussed i§1.2.4 Here,
P(H) is derived and analysed for the general case #f0.

Let Sbe the following discrete random variable with possibldisations—1 and 1,

Z//
S= Z7 (53)
Definitions @4) and 63) mean thaZ” = SHZ and, therefore,
Pzrz (Z/, Z”)dZ’dZ” = pPz/z» (Z,, SH Z)Z,dZ,dH . (54)

The function in the right hand side of this equality is thejgirobability density o5, H andZ’,
PsHz(SH,Z') = pzz/(Z,SHZ)Z'. (55)

As follows from (32) and @4), the probability distribution density in the right-hanides of (55)

does not depend dB the sign of the second argument. Therefore,

piz(H.Z)= > psnz(SH,Z') =2pzz/(Z HZ")Z'. (56)
Se{-1,1}

An explicit expression for the probability distribution ity p(H) is derived below starting
from the MGF ofpy z-(H, Z") with respect to the variabl#’,

ﬁz/(H,t) = / PH z/(H,Z’)etZ'dZ’. (57)
Substitution of §6) into (57) gives

Lz(H,t) =2 / pz/Zu(Z’,HZ')Z’etZ/dZ':2% / Pz (Z' HZ e% dZ'. (58)
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Substitution of 84) and integration oveZ’ results in
ioco
/ Lzizn(t —HE" t") dt”. (59)

—ioco

10

Lz(H)=— =

The integral in §9) is non-zero, if two special points of the integrangandr, are separated by
the imaginary axisi(r1) < 0 < R(r2). This corresponds to non-zero probability of givdn
Associated boundaries bf are derived below; at the momeritis simply assumed to be within
these boundaries. Therefore, the integration path canm&d=yed as surrounding any one of

two special points and integration can be performed usiadahowing equation,

ico

1 dt” 1
2n | @ —r){t"—r2) ri—rs (60)
—loo
to give
Lz(H,t) = :|:22 ! , (61)
ot \/B2q(t)2 — %% + H2p?

where 5

qt) =1— 1_2’) t. (62)

As follows from 67), £z(H,t) att = O is the probability distribution density ¢f, which is a

positive function suggesting the siga-"in (61),
_3
P(H) = Lz/(H,0) = 551~ p%) (82(1 — p?) + H?p?) 2. (63)

The integration ofp(H) gives the cumulative probability distribution function lef

H
PH) = , (64)
= U e
which reaches the value of onekht= | 3| thus defining the limits in whick varies,
O0<H<|A (65)

In the case = 0 equation §4) reduces to equatiorl) validating presented calculations.
The first moment of is derived from 63) by direct integration using the limit$§),

18]

_ 2
£(H) = [ plH)HaH = |5 L (66)
4 1++/1-p

Both the increase g (correlation between structure factors increases) angkdse of5 (cor-
relation between intensities owing to twinning increases)se’ (H ) to decrease. So in contrast
to the behaviour of (Z?), the two sources of correlation between twin related intiessaffect
E(H) in accord.
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However, the distribution oA (64) is two-parametric and the variation of the parameters
p and g cause different changes in the functiBH). The cases with differeng differ by
the curvature of the functioR(H) (Fig. 3.2a). The effect of decreasing is shrinking of the
untwinned function alon¢d by factors (Fig. 3.20).

A low value of £(H) and the rapid growth dP(H) similar to that represented by the blue
lines in Figs.3.2(a) and3.2(b) occur either if the data are perfectly twinned or if the syatry
of the data is wrongly assigned and the twin operation beistgt is actually a crystallographic
operation. In such cases the perfect twinning test can e tasiglentify if there is twinning.
Still a third case is possible, a strong pseudosymmetryistigg with twinning. Any test can
fail to distinguish such a case from the case of higher cliggt@phic symmetry. Fortunately,
incorrect space group assignment in such cases is unlikgdyetzent the structure solution and
the symmetry can be corrected at the stage of structure medime(related example is presented
in £4.4).

1.0
L o5
o
0.0 ' '
0.0 05 1.0
H
(@ (b)

Figure 3.2. Partial twinning test in the case of correlated structucéoias.

The coloured lines show theoretical cumulative distritsi ofH for

(a) untwinned datad¢ = 0) and

(b) twinned datad = 0.2).

The colours red to blueia magenta correspond to squared correlation coefficientoétsire factorg?
in the sequence 0.00, 0.25, 0.50, 0.75, 0.99.

The thin black lines represent theoretical distributicmrsuncorrelated structure factors £ 0) and the
numbers in front of these lines indicate correspondingeghbf the twinning fractio.
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3.2 RVR plot

Refinement against twinned data has recently been impletémREFMAC(Garib Murshu-
dov, personal communicatiof1.2.5. This work required a collection of test cases. Therefore,
we undertook an investigation of all the possible twinniages, known or undetected, for struc-
tures deposited in the PDB (Lebedetval,, 2006). The goal of the work was to understand the
symmetry environments most frequently accompanying timmand to pinpoint problems with
refinement of twinned structures.

The search for twins in the PDB was originally performed imte of estimates of the twin-
ning fraction obtained from the mean valuestdf(53.1.7) for both observed and calculated
intensities. | wrote a subroutine for the analysis of thédatsymmetry for Alexei Vagin to
incorporate it intoSFCHECK A project student, Nagarajan Periasamy, under my and Garib
Murshudov’s supervision, wrotetashscript for scanning the PDB and | analysed all the struc-
tures that were likely to be twinned. The estimate of twigriiraction for the calculated inten-
sities was intended to be a negative control that could haptifying structures overfitted to
the twinned data, but it was found that there are too mangtstress for which this value was
significantly greater than zero because of the alignmertieoNCS and twin axes. | later recast
the scatter plot in terms i, as this statistic is more robust to the resolution rangd oeen-
pared to the above estimate of twinning fraction. This aksipéd avoid confusing terms such
as “an estimate of twinning fraction for calculated intéiesi’. For this thesis | have rewritten
the software using the statistical packdgéR Development Core Team, 2005) but have anal-
ysed the same set of structures. The new script used onlyriacegflections which made the
comparison with the theory possible. In addition, a largeaaf RvR-plot was annotated and
more twins found, and the detection of false-positives wasenaccurate as all pseudosymmet-
ric structures selected for annotation were automatiaaltywerted into higher symmetry space
group using subroutines fro@anuda(§4.3) and refined to check whether the pseudosymme-
try and twinning were actually a misinterpretation of a f@ghrystallographic symmetry. The
updated results are presented below in this section.

Firstly, the algorithm is described, which was used for thematic determination of po-
tential twin operations. Next, the expected value offffactor between twin related intensities
is derived. Finally, analysis of the PDB is presented andelkealts are summarised in Fi§.3
(p-110) and Table3.1(p.114).

3.2.1 Algorithm for lattice symmetry

Several authors (Flack, 1987; Le Page, 2002; Grimmer, 2083 already described the au-

tomatic identification of potential twin operations usingjtecell parameters and space group.
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An algorithm, which is simpler to implement and more effitiém the case of twinning by
(pseudo)merohedry, is described below.

A necessary step in all these algorithms is reducing thetaeal minimum primitive cell,
either a Buerger or Niggli cell; see, for example, Mighell &dRyers (1980) and references
therein. In the basis associated with any minimal primitivét-cell, the basis vectors of any
other minimal primitive unit-cell have components -1, 0 oAtcordingly, any crystallographic
point group operation is represented in this basis by a rmaith elements from{—1,0, 1}, as
it transforms a minimal primitive cell into a minimal prirvié cell.

The setX of all 480 matrices with elements frof+1,0, 1}, of finite order with respect
to matrix multiplication and with determinant equal to osegenerated. This set includes all
matrices representing (pseudo)rotations of the lattigealso contains irrelevant matrices. Each
matrix o € X is scored according to the perturbatienthat it causes to the metric matnw

derived from the primitive unit-cell parameters,
8 (tanw)? = trace(( §—o0 m‘lon)2>. (67)

In the case of two-fold rotations, the perturbatiorconverges to the obliquity angle as the
obliquity angle decreases. The reason for usings a score instead af is that the obliquity
angle is not a good measure of lattice perturbation for tkegtioms of higher order.

The operations of the crystal point group are transformetthdégorimitive cell to giveG, a
group of 33 matrices with elements frofi—1,0,1}. The matrices fronX are used sequen-
tially, in order of increasingy, to expandG to the point group of the lattice (pseudo)rotatidths
At each step, the currelht is replaced by its external product with the next X. The proce-
dure is terminated and the last step cancelled, if the lHa&/an infinite group (25th element is
generated).

Finally, the coset decomposition éf relative toG is found and one representative from
each coset is selected to be further used as a potential pgination. The lattice perturbatian
is invariant relative to the exact rotations frégand the same value afis therefore associated
with all members of the same coset. This is an additional rdge ofw as compared with the
obliquity anglew.

The twin is a twin by merohedry if the twin operation belongshe hemihedry of a mero-
hedral point group and the twin is a twin by pseudomerohetmgravise. To draw Fig3.3(b),
the type of twinning associated with given potential twireggition was automatically analysed
using the following method. Le&b be a point group anth be a metric matrix represented as a

set of 6«6 matrices and as a 6-vector, respectively. rodte invariant with respect G,

gm=m, ge G (68)
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Consequently, the projector

=G> g

9eG
is such thatrm = m. Let o be a &6 matrix representing a potential twin operation. If

or = m, (69)

then

oOom=0mmMm=m7mM=Mm

and no constraints are neededifoto be invariant with respect win addition to those imposed
by (68). Therefore, if 69) holds, thero generates twinning by merohedry. This test requires no
tables and can be performed in integers if thé Enatrix representation @ corresponds to its
3x3 matrix representation in fractional coordinates.

These two algorithms were implemented iF@RTRANprogram used for the analysis of
twins in the PDB. A modified version of my algorithm for detenattion of twin operations was

later implemented icctbx (Ralf W. Grosse-Kunstleve, personal communication)

3.2.2 R-factor between twin-related intensities

Let Rwin denote the intensity-basdifactor between reflections related by potential twin oper-
Z “h - Ih"

Rwin = ————. (70)

Z(lh + )

h

ation Swin,

Summation in70) is over all unique reflectionts, such that intensities for bothandh’ = Syinh
have been measured ang# h’. The definition 70) coincides with the definition dRsym in the
case of two symmetry operations. Therefdg,n can be directly compared witym estimated
during data processing.

In terms of the normalised suré, and differenceZ” of twin-related intensities defined in
(23),
Zh: XnlZH
zh: XnZh

In this equationy,, is the normalisation coefficient, which depends on the te®ul of a given

RtWin = (71)

reflection.
The expected value &in is approximated by the ratio of the expected values of theamum

ator and denominator. Under assumption of constant ctioelaetween twin-related structure
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factors, as i§3.1, the expected values @f and|Z"| are independent df and sums of normal-

isation coefficients are cancelled,

5<;Xh|zg ) N 5(|Z”|)
f(Sum) | 6@

The expression in terms of the correlation coefficient betwvin-related structure factprand

& (Rtwin) ~ (72)

relative volume of smaller individual crystalfollows from (20), (41) and @2),

E(Rwin) = £(|2"]) = % (1—2a)y/1-p2 (73)

The standard deviation,
2
UZ(RtWin) = 5((Rtwin - E(Rtwin)) ) (74)

is expressed through the ratio of the expected values,
1 " / 2
£( (S xnlzhl = €02") S xnh)

o((52))

The expected value of the square in the denominatorshié approximated by the square of

O'Z(Rtwin) ~ (75)

the expected value, the expected valueg'aind|Z”| are assumed to be independenhpénd

equations41) and @3) are used to obtain the following approximation,
1 2
o*(Ruin) ~ 5(1 — 20)? (Z ) Yo (76)
h

The dependence of the normalisation coefficierin s = |h|, on the overall scale fact@rand

the temperature factdris approximated by the following Gaussian,
x(s) ~ ae " 77)

and summation is replaced by integration to evaluate thestwias in 76),

3

d xn~ %/ e ¥ @gs . VT _Na
h 5
S

V2 (5/b)%

2 3N 1b\224 ., VT N&
Y o xh = /(ae )°Shds ~ YR

In these approximationgy is the number of reflections including all symmetry equinéde the

(78)

intensities of the reflections beyond the upper resolutioit Eare assumed to be negligible and
therefore the upper integration limits are replaced by ityfirFinally, the combination of13),
(76) and (78) gives the following approximation for the relative errdrtioe estimate{3),

o(Run) _ (VDR (L1 /?)
e~ S o0
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In the rather unfavourable case of high temperature faloter,50A2, inadequately high upper
resolution limits = 0.5,&—1, moderate number of reflections, = 10000 andp = 1, the
relative error is 0.02. The absolute error of the estimate? fom Ryin is of the same order of
magnitude and is much less than the variatiop?ofvith resolution.

Let RoES andREC denoteRwin calculated using observed intensities and intensitieigetbr
from the atomic model, respectively. The calculated intesss which represent a single indi-

vidual crystal, are untwinned. Therefore,
1
|
win ~ 5> V1= p?,

pe A (1— 20) REAS.

(80)

Given twinned data and an atomic model of the crystal, thennsgaared correlation between
twin-related structure factors? and the twinning fractiony can be estimated from the first and
the second equations iB@), respectively.

If the unit cell parameters and space group of a given strecllow twinning, then the
structure can be represented by a point in the pId’tzg‘gif1 againsthCV";‘i'ﬁ (RvR-plot, Fig.3.3).
The value ofp? is in the range 0 to 1 and the value ©fis in the range 0 to 1/2. Therefore,
as long as the approximatio5) is valid, the point is located in the triangle defined by the

following inequalities,

1
0 < R < 5 -
0 < Run < R

Fig. 3.3(a) provides a qualitative characterisation of possible €adéhe points witl‘Rfﬁi'g ~
1/2 represent the cases, in which the twin-related strucag®ifs do not correlate (these may
be twinned or untwinned). If the space group assignmentdsriect and the potential twin
operation is in fact the operation of the crystal point gratinen ai'g ~ 0. The abbreviation
RPS stands for rotational pseudosymmetry and denotes teniediate cases, in which the
orientations of some molecules are related by the potemtialoperation.

Any single-value intensity statistic can be used in a similanner to estimate andp and
to characterise the relation between NCS and twinning. Adg@mdidate is the mean value of
H defined in 24). In the case of uncorrelated structure factétss a sufficient statistic foe
and, similarly toRwin, the expected value of this statist@gf linearly depends on.. However,
Rwin has several minor advantages: it is directly comparablie Rf,; there is no singularity in
the denominator for small intensities, in contrasttcand the contribution from high-resolution
shells with high experimental errors is downweighted. Idition, the nonlinearity op? is less

in the case oRwin.
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The RvR-plot or similar plot for another single-value stiti can be useful for structure

validation. In this project, it was used for detection ofrinéd cases in the PDB.

3.2.3 Scatter RVR plot based on PDB-data

The simplest possible way to select twinning cases from B Would be to extract the relevant
information from the PDB headers or related papers. Howehier approach is not sufficient
because the researchers depositing data or writing pagréave not noticed or not discussed
twinning (false negatives), or may have misinterpretechéigcrystal symmetry as twinning
(false positive). Therefore, it was decided to analyse PBes directly. This direct approach
may also lead to a better understanding of the problems htldé¢tection of twinning.

The PDB February 2004 release containing about 22 000 stasctvas screened and the
entries in which both coordinates and structures factore \&eailable and readable by CCP4
software (11 367 entries) were used in the analysis. Thecefliparameters and space group
of these entries were analysed using the technique dedali®ve §3.2.7). In this analysis, a
lattice perturbationg7) less than &° was allowed. This threshold was about two times less than
the Mallard’s limit of & for the obliquity angle1.2.1 If twinning by (pseudo)merohedry was
possible then this data set was selected for further asal§8iL0 entries). If observed intensities
were present they were used directly for Rvéactor calculations, and if only observed structure
amplitudes were available, they were squared to approgrit@tresponding intensities.

For each of the selected PDB-entries, potential twin opmraitwere selected, one from each
coset of equivalent operations, and the associBf&fl andRE3lC were calculated. If there were
more than one non-equivalent operations (as, for exampkg), the one with the lowest value
of bif; was selected. Thus, each selected entry was characteyidea louantities, bif; and

ai'ﬁ, and the corresponding point was drawn on the scatter RviRpig. 3.3b). In addition,
the method described §8.2.1was used to decide whether any twinning for the selected twin
operation could be by merohedry or pseudomerohedry. Thegwi Fig.3.3(b) are coloured
according to the results of this analysis. The specific aaggssome peculiarities of the RVR
plot are discussed below.

Calculation ofReES andREal were performed for all data and for the resolution range 10 to
3 A and revealed only a marginal difference between two seR-fafctors for most examples.
Only for six structures from the annotated area of the RuiR-phas this difference for any of

b and REAC greater that 0.05 and only in one case could lead to misirtton of the
results. However the latter structure was annotated mgrasluntwinned. Fig3.3 shows the
results with the resolution cut-off applied, as it was domethe previous versions of the RvR

plot discussed in the beginning of this sectig8.p).
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Figure 3.3.RVR scatter plot.g) Schematic view of RvR scatter plot: expected locationsofi{s corre-
sponding to different combinations of twinning and RAS.@bserved RvR scatter plot: red, (potential)
twins by merohedry; black, (potential) twins by pseudorhedry. Green ovals show the area populated
by cases with translational NCS (labellépand the areas corresponding to experimental data in¢tyrrec
deposited in the PDB with structure amplitudes marked anasities andiice versalabelledB andC,
respectively). €) Observed RvR scatter plot, enlargementlgf (black, known to be untwinned and
not analysed; blue, found to be untwinned after furtherysis| green, twins without RPS; red, twins
with some degree of RPd)(Middle blue curve, results after refinement of PDB entryH,neerformed
without taking twinning into consideration, against siateld data sets with the twinning fractions in the
range 0-0.5 with default restraints on temperature factbedt red curve, the same calculations with
relaxed restraints on the temperature factors. Right greere, results before refinemeRﬁ;’;‘i'g ~ 05. It

is expected that proper twin refinement would preserve thlises
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3.2.4 Untwinned cases

A large cluster around (0.5, 0.5) includes the points cpeding to untwinned crystals without
RPS and, in particular, to untwinned crystals belonging &ahedral point groups 4, 3, 32, 6,
23. In addition, some of the points from this cluster areljike represent detwinned data sets.
The latter cases of twinning could be found by scanning tlzeldes of the coordinate files, but
could not be validated. This analysis has not been performed

The points on and close to the diagonal, WRffIS ~ RS in the range 0.3-0.4 form the
lower tail of the main cluster and correspond to untwinngatads with RPS. This tail extends
down the diagonal to about 0.2, where one can find an extrelmm@mr of pseudosymmetry
(1i1j; Lougheedet al, 2001). In this high-resolution structure, the r.m.s.dCéfatoms from
the positions corresponding to higher crystal symmetrp@ua0.25A.

The main cluster also has an upper diagonal tail around@®¥corresponding to structures
with translational NCS, in which the set of NCS vectors is ingariant with respect t&win.

In these structuressuwin maps weak reflections into strong reflections and the assomibtat
the expected values of twin-related intensities are e@fli¢ violated. The numerator irY{)
increases and therefoRy,in becomes greater than expected. Twinning seems unlikelycim s
structures, note the empty area in the RvR plot below thewardar consideration.

The cluster at the origin corresponds to the structures irctwithe crystal symmetry is
incorrectly assigned and is actually higher than that usdtié refinement and reported in the
PDB entry. In 42 cases randomly chosen from this clusterasfents in the original and higher
symmetry space groups were performed starting from synisadtmodels without solvent and
gave differences iRqee in the range-0.02 to Q02. (Inclusion of solvent would break the higher
symmetry.) | deemed this to represent successful refinemarll these cases the intensity
statistics either favour the higher symmetry or are inaasige. It seems therefore impossible to
reject the null hypothesis of higher symmetry with the ekpental data available in the PDB,
although it cannot be excluded that analysis of unmergemgities and merging statistics could
reveal pseudosymmetry and twinning in some of these stegtu

There are extra features in the RvR-plot, which arise frorarsrin deposition. These are
two small clusters located above and below the main clustdrhéghlighted by green ovals
in Fig. 3.3(b). In the first one, at about (0.5, 0.3), the structure amgdituare labelled as
intensities, and in the second one, at about (0.5, 0.7)ntkesities are labelled as the structure
amplitudes. Such mistakes can in principle be automafiéaéintified if necessary. However,
if additional factors, such as twinning, pseudosymmetrgrasotropy affect the data, or several
deposition inaccuracies (for example, deposition of thevimed data instead of the measured

data) are present simultaneously, then such an analysisnesccomplicated, if at all possible.
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For example, the manual analysis of the “twinned” area ofRkR-plot revealed several data
sets with unusual intensity statistics, which could not bambiguously attributed to twinning,

NCS or a combination of these two.

3.2.5 Cases of twinning

The cases witlRe2S < 0.4RCAC andREAC - 0.2, as well as some randomly chosen cases from
other areas of the RvR plot, were further investigated (o@d circles in Fig3.3c) to validate
the presence or absence of twinning and to characterise @& iNpresent. It was assumed
that this area contained all twinned cases with significatrting fraction ¢« > 0.1) except
for the PDB entries with detwinned data. However, some oft#fias with « 2 0.1 could
have been overlooked, and actuain identified twins could be greater than expected from the
RVR plot. This is because refinement against twinned datavitiittwinning ignored leads to
underestimated value ai'ﬁ and consequently underestimated3.2.6 Fig. 3.3c).

The protocol of analysis included validation of the mo@&HCHECK Vaguineet al, 1999),
visual analysis of the structur€6ot Emsley & Cowtan, 2004), analysis of the SRFQLREPR
Vagin & Teplyakov, 1997), perfect twinning tests (cumulatdistribution of normalised inten-
sity and the second moments of acentric reflectidfl;;NCATE Collaborative Computational
Project, Number 4, 1994) and partial twinning tedttests;SFCHECK. The analysis of the
SRF and twinning tests were performed for both observed alodlated intensities with differ-
ent resolution cut-offs. In problematic cases the statishif calculated intensities were exam-
ined for different models, original and refined with stromgtraints, with and without solvent
atoms. The NCS operations if present were compared witmpatéwin operations to identify
RPS. If pseudosymmetry was present, an attempt was madaasidrm and refine the structure
in the corresponding higher symmetry space group usingosatines formZanuda(§4.3) and
REFMAC in order to validate the reported space group.

Twinning has been identified with a high degree of confidenc#li0 cases shown by red
and green circles in Fi@.3(c); red and green indicating the cases with and without RBpee
tively. The remaining cases analysed (blue circles) it ihree groups, untwinned structures,
untwinned structures with incorrect space group assigharahpathological cases, in which the
model is incomplete or corrupted, or intensity statistiosld not be unambiguously interpreted.
The minimal value oRS3C for twinned structures was 0.2. At the same time, there wereral
cases with incorrect space groups, in whRS was more than 0.2, up to 0.4. These models
were strongly overfitted towards twinned data and there \s@peificant differences between
independently refined molecules which were symmetry-@dlat the actual crystal structure.

In general, only one third of the cases identified as twinseweported as such in the PDB
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submission (32 out of 110), although in some of the remaimivigned cases the analysis of
intensities derived from atomic models shows that the timimmvas actually taken into account
during refinement. Nevertheless, in a significant numbersés this was not done (false nega-
tives). In two certainly untwinned cases twinning was régabin the PDB file and, accordingly,
the structures were refined in lower symmetry space groafse(positives).

Table3.1contains symmetry and NCS information for the identifiedesasf twinning and
demonstrates that twins by pseudomerohedry are not unasdahat RPS is present in half of
all twins. The nature of additional lattice symmetry in n@aolecular twins by pseudomero-
hedry is analysed for two examples 8.3 and §3.4. The second example also demonstrates
that RPS is necessarily present in OD-twins by pseudomérghe

Four orthorhombic twins by pseudomerohedry with a spesgdltetragonal lattice have been
identified (Table3.1). In these cases, the lattice symmetry also allows twin bsohesry with
tetragonal crystal symmetry. These examples therefotdigig the importance of an exhaustive
analysis of possible twin laws and show that the attempts$rattare solution should not be
limited by consideration of twinning by merohedry despttehiigher probability, if both types
of twins are allowed by the lattice symmetry.

The blue point in the RVR plot witRElS = 0.18 andRRPS = 0.28 corresponds to detwinned
data of an OD-twin be reticular pseudomerohedry (PDB cobls) Hiscussed if1.3.4
3.2.6 Effect of refinement onREaC
The cases with RPS (red points in FR&3c) were defined from the analyses of the atomic
models. The similarity between NCS related molecules aaalignment of NCS and twin axes
(a discrepancy of up to°8vas tolerated) could be insufficiently precise to cause amjifcant

correlation between twin related structure factors. Ih&efore unsurprising th&ta!

« for some
of the cases with RPS is large, up to 0.5.

On the contrary, the assignment of cases without RPS was (gfreen points in Fig3.);
there was only one molecule per asymmetric unit in many afe¢hand the relation between
symmetry independent molecules was clearly irrelevaniwia totation in others. The low
values o ai'ﬁ for some of these cases can only be explained by either jpgfileslin the exper-
imental data, or, more likely, by overfitting of the model &g twinned data.

The decrease iRES owing to untwinned refinement against twinned data was exaahi
using a simulated experiment. The Rldata from an untwinned crystal (PDB entry 1ngh,
space groupgr3;21) were artificially twinned to produce six data sets withiniving fractions
of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The model from the PDB was eefiagainst all these data sets

following the same protocol, without model rebuilding aggaring twinning. The values of
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Crystal symmetry or
type of twinning

No. of twins

RPS TNCS RPS+
Total total total TNCS

P1

P2;

Cc2
P2,2,2
P212:2;
C222;

twins by pseudomerohedry,

total

P4,
P4,
P43
14

14
P3
P3;
P3;
H3
P321
P3;21
P3;12
P3,21
P6;
P65
P64
P63
12:3
twins by merohedry,
total

total

2 - - —

26 25 4 4
2 2 1 1
1 1 - -
2 2 1 1
1 1 1 1

34 31 7 7
4 1 2 1
1 1 1
6 4 1 1
3 2 - -
1 - - -
2 2 2 2

10 4 2 2
8 3 2 2

18 - - -
3 3 1 1
3 — - -
1 - - -
1 — - -
1 - - -
6 3 1 1
1 - - -
6 1 1 1
1 - - -

76 24 13 12

110 55 20 19

Table 3.1.Frequency of twinning in different symmetry environments.

TNCS stands for translational NCS.
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bs and RS were calculated for the simulated data sets and correspgrigéfined” models.
The result is shown as the central blue curve in Bigd).

If twinning had been properly taken into account during refivient therthv";‘i'ﬁ would remain
constant throughout all these refinements (vertical grieeron the right in Fig3.3d). With this
reference curve the decreaseﬂﬁi'ﬁ owing to incorrect refinement is clearly seen. To analyse
this trend further “refinements” were carried out with moeéared restraints on temperature
factors. The results are plotted in red in F&3(d) and show further reduction &3, The
plots in Fig.3.3(d) show that there is a significant biasl@i'ﬁ owing to untwinned refinement
but this is still too small to explain green points wREES < 0.3.

The “incorrect refinements” have been carried out startinghfthe correct model. Since
real-life crystal structure solution requires many cyobdgefinement alternated with model
building, it is anticipated that in some cases the drift @ ploints to the left of the plot might be
more serious than in the simulation. To check this, the POB/dmth represented by the green
point at (0.260, 0.155) in Fig.3(c) was inspected in more detail. This was a crystal structure
of T4 lysozyme belonging to the space grdegy with a = 53.6 andb = 1019 A and with one
dimer per asymmetric unit. The axis of the dimer deviatednftbe closest twin axis by 85
Firstly, the PDB model, which is further referred to as Modlelvas refined using untwinned
restrained refinement with reasonably strong restrairsia@iREFMACoption “weight matrix
0.03") to generate Model 2. As a result tREC increased from 0.260 in Model 1 to 0.393 in
Model 2. Nevertheless, the new value I%i'ﬁ was significantly less than the expected value
of 0.5, indicating that the atomic parameters in Model 2 rieedh biased toward those in the
corrupted Model 1. To exclude the bias Model 2 was correcsddliows. The subunit A of the
dimer was fitted to B angice versathe model with exchanged subunits was refined, corrected
manually usingCoot and refined again, untwinned restrained refinement beind imsboth
instances. The resultant Model 3 HagC of 0.442, which was in agreement with the results of
the simulated experiment in Fig.3(d). Finally, Model 3 was subjected to twinned restrained
refinement with the new version ®EFMACto generate Model 4 with a reasonable value of
0.475 forR‘gf}i'ﬁ. Fig. 3.4(a) shows Models 1, 2, 3 and 4 as points in the RVR plot.

Further comparison of the four models is presented in Bg&b) and 3.4(c) and in Ta-
ble 3.2 Anincrease ifRal can equivalently be expressed as a decrease in the CC betwigen
related intensities. In tern, SRF peaks represent rom@ssociated with high correlation of
intensities, so such rotations can be seen from the SRF(pligts3.4c). The 180 section of the
SRF for Model 4 showed only the peaks corresponding to thi€8 Bixes, which were equiv-
alent in the space group3;. The same section of the experimental SRF revealed adalition
peaks from three equivalent twin axes and from interactlmetsveen twinning and NCS. All

these additional peaks were not relevant to the structuse ofdividual crystal and could not be
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present in the SRF calculated from a correct model but al@itwere present in the SRF from
corrupted Model 1. Such a feature of Model 1 was associatddanguite large r.m.s.d. ofC
atoms from their positions in the reference Model 4, smaitaedation ofB-factors in Models 1

and 4 and a hugB-factor of 30% between structure amplitudes calculateahfitee two models
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Figure 3.4. Overfitting of models to twinned data.

(a) Relation between Models 1, 2, 3 and 4 is shown: Model 1 wams the PDB (1qgth), untwinned refine-
ment of this model (the arrow labelled A) resulted in Modefi2ther untwinned refinement alternated
with rebuilding (the arrow labelled B) resulted in Model 3hiah converged to Model 4 after twinned
refinement (the arrow labelled C). Green points in the bamkgd are from Fig3.3(c).

(b) B-factors of the main chain atoms N, CA and C of chain A in therfmadels; the lines ink) and
corresponding points iraf are shown in the same.

(c) the 180 section of the SRF from experimental data (left) and fromacttrre factors calculated using
Models 1 (centre) and 4 (right) with strong peaks correspani three equivalent twin axeg (= 90°),
three equivalent NCS axes (~ 30°) and interactions between NCS and twin axes{ 60°).
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(Table3.2). Model 1 also revealed impossible in a correct model fluatna of B-factors along
the main chain (Fig3.4b). Comparison of Model 2 with the reference Model 4 showedebet
behaviour of the above indicators, and Model 3 seemed to hergasonable in that sense. It
was therefore concluded that the main role of twinned refardris not a model improvement,
but avoiding overfitting towards twinned data in the courenodel building and refinement.
In particular, twinned refinement of a correct model producerrect low values of reliability
factors signalling that the model needs no further “improgat”. All these may be especially

important for novices at crystallography and for automatexdiel building.

3.2.7 Concluding remarks

The detection of twinning should ideally be performed atdtage of data acquisition before
the crystal structure is known. This task is not always ativior example, perfect twinning
(o« = 0.5) cannot be detected from merging statistics. In somerinstg even the twinning
tests (distributions oZ andH) are too ambiguous for assignment of crystal symmetry and de
tection of twinning prior to the structure determinatiomistcan be for several reasons including
pseudosymmetry, radiation damage or rejection of weekgities.

The analysis of the RvR scatter plot with the PDB-data demnatesl the importance of
pre-deposition symmetry validation. Both false-posgivand false-negatives in detection of
twinning were found in the PDB. Twinning was frequently deeked in the examples with
low twinning fraction and in the cases with RPS. There wese ahses with incorrect space

group assignment, in which the higher point group symmefith@ data had been modelled as

Model No 1 2 3 4

Refinement:

Twinned n/a no no  yes
R 0.189 0.255 0.250 0.187
Riree n/ad  0.309 0.289 0.218

Comparison with Model 4:

R-factor between calculated amplitudes 0.298 0.243 0.133
R.m.s.d. over € atoms 0.354 0.234 0.112
Correlation coefficient foB-factors 0.539 0.913 0.954

Table 3.2.Overfitting of models to twinned data.

Four models of the same crystal structure are compared.
Relations between the models are explained in &i4.

fValues from the PDB entry 1qth
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twinning. However, these false-positives constituted/@minor fraction of the whole set of
structures modelled and deposited in a lower symmetry spiacep.

The programZanudawas therefore developed for validation and, if necessargnaatic
correction of the space group assignment for pre-refinedetaod his program is described in
§4.3in the discussion on false origin MR solutions, yet anotkason for incorrect identification
of symmetry in the presence of NCS.

In addition, the identified twinned data were used as tesisdas the new version ®REFMAG

which performs twinned refinement against a marginal liladid target.
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3.3 Example of twin by metric merohedry

Proteins from the phage SPP1 involved in DNA translocati@saudied in the group of Dr.
Fred Antson (YSBL). Two crystal forms of the C-terminal damaf the large terminase protein
(gp2) were obtained by Dr. Maria Chechik, anomalous diffcecdata (Se-Met) were collected
by Mikhail Shevtsov and the structure of a non-twinned fortedmined by Oleg Kovalevskiy.
| solved and analysed the structure of the twinned crystah fo

This is an example of a crystal in which several NCS operatare present but none of them
has its axis aligned with the twin axis. Therefore the thicakintensity distribution {1.2.3
holds despite the high-order NCS. Accordingly, the pointhim RvR plot £3.2) corresponding
to this structure is located in the area of “simple” twinsy(F3.5). A remarkable feature of this
example is that the analysis of NCS clearly reveals the tstralcnature of constraints on cell

dimensions required for twinning.

3.3.1 Background

The diffraction data from a twinned crystal of the gp2 C-terah domain were initially pro-
cessed inC222 space group. Perfect twinning tests clearly revealed twinby hemihedry
(Fig. 3.6). With these data, the space group can be unambiguouslyndeezl. There are four
subgroupsP1, P2; and two non-equivaler2 in the apparent222; space group. Only one of
them,P2; accounts for observed systematic absences. The data veeefotte reprocessed in
P2, with a = 69.4 A, b = 1594 A, ¢ = 107.7 A and 8 = 1088°. The partial twinning test in

P2, (H-test for the twin operatioh, —k, —h — I) is shown in Fig.3.7. Similar behaviour was
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Figure 3.5. Twinned crystal of C-terminal domain of gp2 protein from gh&PP1. The red pointin the

RVR plot §3.2) corresponds to thB2; crystal structure and X-ray data collected from twinnedstaly
Green points in the background present scatter plot defieedthe PDB (Fig3.3b).
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observed in botlC2 subgroups. Such behaviour means that the crystal is arspadect twin
and that the partial twinning tests provide no additionadlence for space group assignment.

The SRF calculated using the twinned data revealed peaksdold (Fig. 3.8a), fourfold,
fivefold and tenfold rotations. The SRF-peak &t,(0°, 187) is a crystallographic peak and
the peaks at (90 0°, 18(°) and (90, 9(°, 18(°) are due to two equivalent twin operations
(the angular coordinates of the SRF peaks are given relaiivbe view in Fig.3.8a). Two
interpretations of the remaining peaks seemed likely. énfitist interpretation, the asymmetric
unit contains a decamer and the tenfold axis of the decamkesrangles of about 45vith a
andc and 90 with b. In this case, the SRF-peak at $9@:45°, 18(°) corresponds to the two-
fold axis of the decamer and the peaks anf18&45°, 18(°) are generated by the tenfold axis of
the decamer and the crystallographic two-fold axis, peaklts ‘s and “—" coming from two
different individual crystals. In the second interpreaiati the asymmetric unit comprises two
pentamers related by NCS fourfold rotation abbufhen, the peaks at (86, +45°, 18%°) are
generated by fivefold symmetry of the pentamer and cryspadfghic symmetry, whereas peaks
at (18+36n°, £45° 18() can be considered as generated by fivefold symmetry of thamper
and rotations (99 £45°, 18®°), which, in turn, are generated by NCS fourfold axis and twin
operations. The first set of peaks would be present in the SRftecsingle crystal, whereas
the second set is owing to twinning. In both interpretatitims asymmetric unit contains ten
molecules, in agreement with sizes of molecules and thecehit

With this data, it was reasonable to expect that the C-texhdiomain of gp2 forms oligomers
with point group symmetry 5 or 10. This is of considerableldm@al interest. If such an
oligomeric state had been confirmed, it would be reasonabdxttapolate it on the whole gp2
molecule, whose second (N-terminal) domain has the ATPeséty and is involved in pro-
cessive packaging of DNA into the viral capsid. In turn, themetry of the biomolecule with
the ATPase function is important for understanding the rapism of the DNA packaging. This
symmetry is currently debated. For example, the fivefoldregtny of the ATPase in the phage
$29 was concluded from the EM-reconstruction of the phageégaby Simpsoret al. (2000)
and was a key feature in the mechanism of the DNA packagirgtieg proposed. The fivefold
symmetry of the ATPase from a different phage would be stridence for this mechanism
and for its variation discussed §2.6.

Interestingly the small terminase subunit (gpl), anothetgin from SPP1 interacting with
the DNA and the portal protein (gp16), also shows a fivefold axthe SRF (Fig3.80). The
three proteins are likely to form a complex at the stage of Ddpdkkaging initiation. Two
observations of fivefold symmetry in the related proteinsensiggestive of its biological sig-
nificance. This was one reason why the twinned crystal formgp&f was still of interest even

though a different crystal form of gp2 had already been sblve
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Figure 3.6. Perfect twinning test for twinned monoclinic crystal of €+hinal domain of gp2 protein
from phage SPP1.

The colour legend ford), (b) and €) is the same as for similar plots in Fig.1
The resolution range used io) (s outlined by green boxes i and ().

(a) Cumulative distributions of for all the data, resolution range 24.6-240
(b) Second moment at for acentric reflections against resolution.

(c) Cumulative distributions af in the resolution range 9.90-3.20

(d) Completeness an@standard against resolution.
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Figure 3.7. Partial twinning test for twinned monoclinic crystal of €dmninal domain of gp2 protein
from phage SPP1. Experimental distributiortbfs presented by red dotted line. The intensities derived

from the atomic model were used to simulate the cumulatis&idution ofH (blue lines) for different
twinning fractions (the numbers in front of the blue lines).
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Figure 3.8. The SRF sectiong = 18( for crystals of two proteins from SPP1 phage showing 10-2-2
symmetry. &) TwinnedP2; crystal of gp2 C-terminal domain and)(singleP2,2,2; crystal of gp1 C-

terminal domain. Orientation ira) is the same as in Fig8.9%, 3.9, and3.9d. This figure was generated
usingMOLRER
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3.3.2 Structure solution

Several data sets were collected for the twinned crystai forcluding KBr derivative data sets.
The crystals were diffracting to 2.4 at best. All of the crystals were twins and attempts to
solve the structure with experimental phasing failed.

The Se-Met mutant of the gp2 C-terminal domain was theneafiined and crystallised.
These crystals belonged to space gré3p21 witha = 69.9 A, c=727A, had one molecule
in the asymmetric unit and diffracted to 180 These crystals were not twinned. X-ray diffrac-
tion data were collected at ESRF at three wavelengths, (DIB&Zremote), 0.9787& (peak),
0.97891A (inflection). An initial set of phases was obtained us8tgeLXDand SHELXEand
a partial model was built usingOLVE The complete model was built manually usi@gotand
refined usinREFMACand the data from the remote wavelength.

The twinned crystal form was solved by MR. Eight of ten molesiconstituting the asym-
metric unit were found using the default mode®LREP The remaining two molecules were
placed usind.SQKABby interpolating NCS symmetry. The MR was repeate@irto validate
the assumption oP2; symmetry. The model was refined usiREFMAG the first chain was
corrected manually usinGoot and changes were propagated to NCS-related molecules. The
next round of refinemenREFMACwith TLS parameters gave = 31.5%, Riee = 33.9% and
further twinned refinement with CNS resultedRn= 21.6%, Riee = 23.3%.

3.3.3 NCS and orthorhombic cell

The organisation of the crystal is shown in (F&9). The expectation of an oligomer with
point group symmetry 5 was not fulfilled. On the contrary, thelecules form filaments with
53 screw symmetry, in which neighbouring molecules are apprately related by a rotation
of 144 about the axis of the filament and by translation along it. fwdecules are polar and
neighbouring molecules make contacts by oppositely chlafayes.

Parallel filaments form layers with much weaker contact® [@kiers are stacked across each
other in theb-direction to generate NCS fourfold symmetry and crystaégphic symmetry2;
with four layers spanning the length bf(Fig. 3.9a and3.9%). That is, the neighbouring layers
shown in Figs3.9(c) and3.9(d) are approximately related by a NCS screw fourfold rotaéind
every first and third layers are related by the crystallogi@pvo-fold screw rotation.

The most significant conformational differences betweentto crystal forms occur in the
interfaces forming filaments. The (electrostatic) inteleaalar interactions within the filaments
appear to be the strongest in the crystals, and a filamentaeppe be the most stable sub-
structure. Thus, external interactions have little effacthe internal structure of filaments. In

particular, this means that base vectors of crystallogcapanslations along filaments;, ande,
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Figure 3.9. Organisation of the crystal of the C-terminal domain of gp@ein from phage SPP1a,(b)

C representation of ten molecules constituting the asynimetit of the crystal. Different molecules
are shown by different colours. The “legs” of the “X"-shapegymmetric unit are extended by crystal-
lographic translations into infinite filaments and repeatefdrm layers in (010)-planec(d) Schematic
views of (010) layers, in which individual molecules are whdoy spheres coloured according to the
dominating surface charge. The green bands on the surfates spheres span 1244nd show the ap-
proximate 3-symmetry of the filaments. The black arrows show the baaisstations of the primitive
lattice, a andc, the basis translations of tigcentred latticea andc’, and the basis crystallographic
translations along filaments, ande;.
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in Figs.3.9(d) and3.9(e) have equal length,
€1 = [&]- (82)

It is reasonable to assume that the contacts of given filamihtits neighbours are mainly
accommodated by shifts perpendicular to the filament axiss therefore clear that equation
(82) holds with much higher accuracy than the accuracy ofilBment symmetry. Relations
betweere, ande; and crystallographic base vect@andc are shown in (Fig3.9). These are
substituted in&2) to get

lc+ 2al> = |c — al? (83)

and
2(c,a) + |a]®> = 0. (84)

This extra constraint on the unit-cell parameters is coiavely written in terms of the basis
vectors
d=2+a (85)

anda of a centred lattice (Fig8.9d and3.%). These vectors are orthogonal becauseddj (

and 85),
(c,a) =0. (86)

Thus our structure belongs to a monoclinic space group Bggsses B-centred pseudoorthorhom-
bic lattice, in which the diffraction data were initially guessed@222;, different setting). The
guestion remains, whether the equatiBf)(should be treated as an exact equation. Note that in
the general case of monoclinic twins by hemihedry, the caimts = 9(° (in either primitive

or centred cell) is not strict. The deviation@from 9 translates into non-zero obliquity angle

and partial overlap of diffraction spots.

3.3.4 Twin axis and composition plane

Mallard’s law for rotation twins states that the twin axisetty coincides with the direction of a
certain lattice row with small indice$1.2.7). The twin axis is a purely geometrical notion and
the Mallard’s law is an empirical law.

The structural reason for Mallard’s law can be the presehem interface between individ-
ual crystals (composition plane) that has an exact two-dgiomal translational symmetry, such
that the associated two-dimensional lattice (or its stib&tis exactly invariant with respect to
the twin operation. In such an interface, optimal inteatdi between two individual crystals
are repeated in all two-dimensional unit cells to increasamatically the energy gain on its

formation compared to a “random” interface.
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Two cases are possible in monoclinic twins (FdL0), the crystallographic twofold axes can
be either parallel to the composition plane (F§4.0a and3.1M) or orthogonal to it (Figs3.1Qc
and3.10d).

No extra constraints ofi are implied in the first case. In general, this is a twinningddtic-
ular merohedry, in which the twin index and obliquity angkpdnd ong and a partial overlap
of a fraction of all spots takes placgl(2.1). A particular case with3 ~ 9(° (Fig. 3.10n) or
B’ =~ 9 (the angle betweeaandc/, Fig. 3.1() is classified as twinning by pseudomerohedry
(non-zero obliquity angle). In such a twin, the twin-rethteflections from different individual
crystals are separated for sufficiently large indices |.

In the second case, the presence of translational symnretiyeitwin interface and the
invariance of associated two-dimensional lattice redativ the twin two-fold rotation implies
that 3 = 9(° (Fig. 3.1(x) or 3/ = 9(° (Fig. 3.10d). This is a particular case of twinning by
pseudomerohedry, in which the obliquity angle is exactlyozend which is also known as
twinning by metric merohedry. Nespolo & Ferraris (2004)rab several monoclinic cases of
small-molecule twins, in whictd = 90° within the measurement errors. Without structural
analysis indicating the orientation of the compositiomplait might seem surprising that such
a situation had occurred.

In this geometrical analysis, the constraints on the twoetisional lattice at the twin in-
terface were extrapolated onto the three-dimensionatairigttice. That is, an approximation
was used, in which all unit cell repeats of the crystal weractly identical. This approxima-
tion is in fact assumed in both data processing and refinentetitese constraints are largely
disobeyed in the three-dimensional lattice, then largarsrare required at the twin interface,
especially at its peripheral part, to restore the trarmtali and rotational symmetries of its two-
dimensional lattice. Such a situation can occur in twinsied by small dendrite crystals, but
not in macroscopic twins.

An individual crystal of our twin is analysed in Fi§.9. The twin interface is unlikely to
cut the filaments, in which the strongest intermoleculagrattions occur. This means that the
vectors along the filament axes, ande, (Figs. 3.9c and 3.9d) are both parallel to the twin
interface. The twin interface is therefore parallel to thenp (010). Hence the second of the
above cases takes place, the twinning by metric meroheghtgierd in Fig.3.1Qd.

Thus, given the (010) orientation of the twin interface, firesence of twinning in our
example means that the constrair@6)(should be treated as exact (as long as the model of the
crystal with identical unit cell repeats is assumed). Theision of 86) is demonstrated by the
low penalty for indexing inC222, and by the absence of split or partially overlapping spots in

the diffraction images.
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Figure 3.10.Possible orientations of composition plane in monoclinins.

The crystallographic twofold axes are perpendicular totame of figure and shown by black ovals.
The composition planes and twin axes are shown by magentthekdlashed black lines, respectively.
Individual crystals of the twin area(b) above and below, and,fl) in front of and behind the composition
plane. Thin solid black lines show lattices. Thin dashedblaes in @,b) show an extension of the first

individual lattice.

(a,b) Twinning by (reticular) pseudomerohedry, in which thestaflographic axes are parallel to the

composition plane. There are no constraintgion

(c,d) Twinning by metric merohedry, in which the crystallograpéixes are orthogonal to the composition
plane and therefore) 5 = 90° or (d) 5/ = 90° (3’ is the angle betweemandc').
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3.3.5 Concluding remarks

Macromolecular structures allow convenient visual arigalp$ the intermolecular interactions
involved in formation of twinned crystals. In particulahettwinned crystal of C-terminal do-
main of gp2 protein from phage SPP1 is composed of one-dimglsarrays of molecules, in
which the strongest intermolecular interactions occur whith span the whole crystal. The
presence of such filaments explains both (i) the presencenlgfcmlar layers, which make rel-
atively weak contacts with each other and which can theeeform boundaries of individual
crystals and (ii) the constrain8§) that makes the translational symmetry of two individual
crystals consistent at such boundary. The next sectioresepts the more common case, in
which the symmetry of a two-dimensional array of molecutethe reason for the “accidental”

symmetry of the lattice.
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3.4 Example of OD-twin by metric merohedry

Ferrochelatase-1 (HemH) froBacillus anthraciswas one of the targets of SPINE (4 al,,
2006). A diffracting crystal was obtained and the crystalicture was solved by Dr. Elena
Blagova, Dr. Olga Moroz, Dr. Vladimir Levdikov and Dr. Axeliller (PDB code 2c8j). | took
part in the structure refinement. The crystal was twinnedteitime constraints imposed by
the genomics project did not allow a scan for another crystah.

The crystal of HemH was an OD-twin belonging to an OD-familytype 1/B (51.3). This
example is presented to demonstrate a typical morphologyereffect of NCS on the intensity
statistics for this type of twin.

The internal symmetry of the OD-layers is shown to imposetauidl constraints on the lat-
tice parameters. In terms of geometrical classificatioawin under consideration is therefore
a twin by metric merohednyi.€. by pseudomerohedry with zero obliquity and]#&,2.7).

The NCS and twin axes are necessarily aligned and strucaister$ related by the twin
operation correlate in this type of twins. The theoreticaldel of an ideal OD-twin is analysed,
in which the symmetry of the OD-layers is exact and corretatietween structure factors is
modulated. The experimental distributionsZodndH and these distributions for simulated data
sets are compared with the theoretical distributions foorestant correlation mode$3.1) and

for a modulated correlation model.

3.4.1 Structure solution

Ferrochelatase-1 (HemH) froBacillus anthraciswas crystallised using Mosquito robot and
mother liquor containing 0.2M Mgg]J 0.1M Tris-Cl pH 8.5, 30% PEG 30K to yield diffracting
crystals with unit-cell parametees = 49.9, b = 1099, c = 594 A anda = B =~ = 9.
The diffraction data were collected at SRS Daresbury PX8dhiline to 2.1 resolution and
initially processed in the point group 222 usiMOSFLM (Leslie, 1992; Leslie, 2006) and
SCALA(Evans, 1997; Evans, 2006).

The MR was carried out using Ferrochelatase fewillus subtilisas a search model (PDB
code lakl), a homologue with a sequence identity of 73%. TRetidls and preliminary
refinements were later repeated in a consistent manner &vagernTable3.3 showing the three
best solutions in both orthorhombic and monoclinic systenmsthis Table the space group
settings are such that the unit cell parameters are the saallesix presented space groups but
the directions of the (unique) crystallographic axes vary.

Initially, eight “biological” orthorhombic space groupseve tested. The best CC was ob-
tained in space grouP2:2:2 and the second best R2,:2,2;. In addition, unlike the other six

orthorhombic groups tested, these two showed substaotitast in terms of the CC between
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the best and the second best orientations (Tal8e Analysis of intensities along coordinate
axes (Fig3.1]) clearly excludedP2,2;1 21, but the highest CC space groBg;2:2 could neither

be confirmed or excluded with certainty. Therefore it wag dhé preliminary refinement that
caused doubts in the original point group assignment. Alghdzcc was decreasing during the
first cycles in bothP2,2,2; andP212,2, the final values oR and Ry Were too high given the
highly similar search model (Tab&3). It was also suspicious that refinement in the incorrect
P212,2; performed better and, with weaker restraints, resultd®l #10.197 butRee = 0.394.

At this point twinning tests had been performed with the higéolution cut-off of 3A to re-

veal features characteristic for perfect twinning interfg with NCS: the cumulative intensity

Space group P2,2:2 P2:2:2, P22:2, P12,1 P2;11 P112
(true)
Highest CC in the TF for

correct orientation 0.510 0.493 0.466 0.566 0.530 0.505

incorrect orientations 0.376 0.384 0.435 0.422 0.445 0.473
Refinement

R 0.403 0.397 0.452 0.312 0.369 0.420

Riree 0.465 0.451 0.496 0.364 0.411 0.497

Table 3.3.Structure solution of HemH frorBacillus anthracis

The MR trials in alternative space groups are presented éditfhest correlation coefficients (CC) for
correct and incorrect orientations. The data for the madniacpace groups are for the second molecule
found. Three monoclinic and three orthorhombic space gouith highest CC are shown. Preliminary

refinements of corresponding models are presentdetagtors.

Figure 3.11.Analysis of screw axes in the crystal structure of HemH.

Three histogram-like plots show the ratiggr (1) for reflectionsh00 (left), kO (middle) and 0D(right).
Reflections with oddh, k or | are shown in green If/o(1) < 2 and in magenta otherwise. Horizontal thin

black lines are drawn at= 0 andl = o(l).
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distribution curve was lower than the reference curve fdminmed data, but higher than the
reference for the perfect twin without an additional effecNCS (Fig.3.14d, p.139).

Therefore the data were reprocessed usif@SFLM and SCALAIn three possible mon-
oclinic point groups (with two-fold axes along differentardinated axes) and the MR trials
were performed in six possible space groups of typ2r P2;. The results of the MR and
preliminary refinements for three best space groups arersimowable3.3. In contrast to the
MR attempts in the orthorhombic space groups, the monoditR model with the highest CC
refined to reasonabk-factors substantially lower than those for other mondclapace groups.
This model was rebuilt, refined ® = 0.234 andRy.e = 0.281 and deposited (PDB code 2c8)).
Because of the initially unnoticed twinning the completsnef the data in the truel2;1 space
group was only 82% (Fig3.13, p.138). The assignment dP12;1 was further supported by
the systematic absences foe= 2n + 1 (Fig. 3.11) and by the partial twinning test (Fig.1%,
p.141) showing a twinning fraction of only 0.2, whereas it wouldrédeen 0.5 if the assignment
were wrong.

The final round of refinement included TLS parameters and wagpteted usindiREFMAC
which had no twinned refinement implemented at the time afctitre solution but anyway
produced loweR-factors and better electron density than twinned refineémain SHELXL
This was apparently because the twinning fraction was ordyo0t the molecules in the crystal
had significant TLS mobility that needed to be accounted for.

An exactly orthorhombic cell was one reason of the late dieteof twinning and initially
erroneous space group assignment. Another reason wastigrdieiing NCS reduced the con-
trast of the perfect twinning test, and the use of all datlugfing very noisy 2.5 to 2.1 resolution
range caused further decrease of contrast and made theisésiaimg. Therefore this example
underlines the importance of at least an awareness of the glienomena while a better solu-
tion would be a twinning test taking into account both expemtal errors and interfering NCS.
Further confusion with the symmetry assignment was at thgestf the MR and was caused
by pseudo-absencestat= 2n + 1 which were likely to be due to the2;(1)1 symmetry of the
OD-layers (Figs3.12a and3.1ZX). In the rest of this section the symmetry of the OD-struetur

of HemH is discussed in relation to the lattice symmetry avidring tests.

3.4.2 Twin morphology

An individual crystal of the HemH twin belongs to the spaceugrP12;1 with a = 49.9,

b = 1099, c = 59.4 A and 3 = 9C°. It is composed of two-dimensional layers in the plane
(010). Fig.3.12a) presents a top view of a single layer and F3gl2b) is a side view of
three adjacent layers. The asymmetric unit contains tweeoubés related by a NCS two-fold

screw rotation. If the two independent molecules are assiga the same layer, the NCS axis
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Figure 3.12.0OD-twin of HemH.

(a, b) An individual P12;1-crystal of the twin: &) a single OD-layer andb] three adjacent OD-layers
shown as € traces with symmetry related molecules in the same colour.

(c) Schematic view of a single OD-layer wifP2;(1)1 plane space group pseudosymmetry. The pseu-
dosymmetry axes of the OD-layer are shown by dashed blae&.lin

(d) Schematic view of the OD-twin with twB12;1 individual crystals at the top and bottom and with the
interface OD-layer in the middle. Crystallographic axes stiown by black lines, the pseudosymmetry
axes of the interface OD-layer are shown by black ovals aadrblecules related by these symmetry
elements are shown in the same colour. The stacking vestargls, relating the origins of the adjacent
layers are shown by black arrows at the right margin.

(e) The symmetrise®2;2;2;-structure that would occur & ands; in (d) were equal td/2.
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relating them is an element of the approximBf (1)1 plane space group symmetry of the layer
(81.3.2. The adjacent layers are related by the crystallograptiefold screw rotation.

Accordingly, the crystal belongs to an OD family of type I/Bid. 1.5h) with the groupoid
symmetryP2;2:2 : P2;(1)1 (No 11 in Tablel.1). In contrast to the types I/A or IlI/A, the
monoclinic member of this family with maximum degree of ardees not have translational
NCS, but instead is prone to twinning by pseudomerohedryngbiric merohedry, as will be
shown below). Figs3.12(c) and 3.12d) are schematic representations of a single OD-layer
and of the OD-twin belonging to the OD-family under consaliem. It is characteristic for
OD-twins in general that the interface OD-layer can belattad to any of the two connected
individual crystals. The internal symmetry operationsha$ interface layer not only relate its
own molecules, but also molecules from adjacent individuagdtals (Fig3.12d). Thus the NCS
and twin axes are necessarily aligned in such a twin.

There are two (imaginary) fully ordered structures comgdasfethe same OD-layers as the
OD-twin under consideration. These belong to the spacepgrBg;2;2 andP2:2,2;. The
second one (FigB.12%) is closer to the actual structure and is used as a referdrmeorigins
of individual layers in the reference structure are set todbated byb/2. Accordingly, the
stacking vectors; ands, relating the origins of the adjacent layers in the actual €dDeture

(Fig. 3.120) are parameterised as follows,

s =b/2+¢ec
. (87)
S =Db/2—-ccC

In this approximation, the components of the veapalongb andc in the basiga, b, c) are
1/2 ande, respectively, and the small component al@nig neglected. The regular sequences
(... 151 ...)occurinside the individual crystals, whereas the seqgiénc s, 191 S .. .)
occurs at the interface, as shown in RBgl2d).

The symmetryP2;(1)1 of the layer is not exact. The coefficienin (87) and the asymmetry
of the OD-layer were estimated as follows. The asymmetritaifrihe refined HemH structure
was transformed by the two-fold screw rotation about an,axtsich was parallel ta and
displaced from the origin bg/4. A rotated copy of the whole OD-layer would relate to its
fixed copy by translation. To find this translation, the asyetnin unit was further transformed,
molecules A and B were renamed to B and A, respectively, anc&a8tvanslated by-a. The
transformed copy was then shifted to the position of the bredth with the fixed copy. The
projection of this shift ort was 5.144, so

5.14A
_ e 2R 0086 (88)
c 594 A

The r.m.s.d. over €atoms between fixed copy and shifted copy in its final posiias 0.24

A. This value characterises the asymmetry of the OD-layer.
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3.4.3 Lattice constraints

The symmetry of an OD-layer can be significantly perturbed, &amgeneral, for an OD-layer
with approximate symmetri2; (1)1, the angle betweemandc is not necessarily exactly equal
to 9C°.

However, as in the previous exampl83), the very ability of the crystal to form an OD-
twin requires that is orthogonal toc to the same accuracy to which the individual crystal
has translational symmetry. Rotation about a symmetry @ixtbe interface OD-layer shows
that the basis vectowsandc in the layer below the interface correspond to the basisoveat
and —c in the layer above the interface. The translation baseseiriviio layers have to be in
exact agreement to form the twin interface, so the anglesdegta, c anda, —c are equal and
thus 90.

Hence, the lattice of the individual monoclinic crystal imegtion possesses specialised or-
thorhombic symmetry, the twinned crystal has zero obligaitgle and can be classified as a
twin by metric merohedrys(L.2.1). From the geometric point of view, the situation is exactly
the same as in the previous example, the twin axis is parallel to the composition plane
(Fig. 3.1().

3.4.4 |dealised model of the OD-twin of HemH

In the idealised model of the OD-twin, the OD-layers havecepdane space group symmetry.
The cumulative distribution of normalised intensitR&) for a perfect twin and the cumulative
distribution of relative differences between twin-retateflectionsP(H ) are derived below and
compared with the corresponding distributions for a twithvaonstant correlation of structure
factors, as discussed §3.1
The idealised model is built starting from the symmetrisedcture in Fig.3.12€). Let

structure factorsp; and p, represent two parts of this structure containing odd- arehev
numbered layers, respectively, so all the layers in a givatig structure have the same ori-

entation. The vector notations are used similarlylid)

p=(pp)’ (89)

Let 6, 6y ando, be symmetry operations of the space gré&#2;2; of the symmetrised
structure. Bothp; and p, are symmetric relative toy,” whereasy and g, transform them one
into another,

op =p
0 1 . (90)
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The individual crystals of the OD-twify and f, are assembled as follows. The substructures
p1 and p; are shifted byt+-ec/2 and—ec/2, respectively, and merged infg. In the individual
crystal f, the shifts are applied with opposite signs.

Letw be the phase angle corresponding to the shijft
w = 2mel (91)
andt be the phase multiplier corresponding to the two times smnaliift,
t=ev/2 (92)

Then, in vector notationsly) and 89), the relation betweehandp is as follows,

f= p. (93)
t ot
Examination of the symmetry of the vectiovalidates the above procedure. The shifts that
had been applied to the substructures were atontherefore, the rotation, does not change
the shift, o;t = t6,, whereas the rotations, and dy change its directionpst = t* 6, and

6yt = t* &y. Thus, because 08(0), the actions of these rotations @38 are written as

(94)

As it should be,oy is now a crystallographic symmetry operation, woleahd o, relate in-
dividual crystals and are therefore twin operations. (kasrect to call these operations twin
operations, as their translational components becomdéiveaghen they are applied to intensi-
ties.)

The individual crystals represented byre shifted by+ec/2 compared to Fig3.12d).
These overall shifts simplify the equations and, of couase cancelled out as soon as structure

factors are converted into intensities.

3.4.5 Covariance model

The biomolecules forming the crystal under considerat@avemo internal symmetry and there-
fore the structurep; andp, do not contain fragments related by non-crystallograpfaicsiation
and do not correlate,

Epp*T = (95)

O NI
NIk O
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Here, the partial structures are normalised by one half t@erttee complete structure normalised
by one.
Because of43) and ©5),

- 1 cosw
Eff*l = . (96)
cosw 1
Equation 25) is restored by letting
p = COSw. (97)

With this notation, all the results @B.1are applicable but only for the section of the data with
a fixed index, on whichw linearly depends. However, the goal is to derive distrimsifor the
whole data set, not for eat¢ksection individually.

The parametep enters the probability distributior®(Z) andP(H) (§3.1) asp? = coSw.
The period of this function iAdw = 7. The period of this function in terms éffollows from
(88) and @1),

_ B 1 o ss (98)

T 2me 2

In particular,l ~ 11.6n andl =~ 5.8 4+ 11.6n for integern correspond to complete correlation

Al

and anti-correlation of structure factors of the two indisal crystals, respectively (= +1),
and the intensities of reflections with thdsare symmetric relative to the twin operation and
do not contribute to the “twin-like” behaviour of intensiggatistics. In contrast, the structure
factors forl =~ 2.9 + 5.8n do not correlate = 0), so the intensity statistics of this fraction of
the reflections is purely “twin-like”. The overall intengistatistics are therefore a mixture of
different distributions.

In the 2.1A data set from the HemH twinned crystal, the rangeisf0 to 28 (0 to 19 for A
resolution cut-off). This includes 4.8 (3.3) perio@8) of the correlation squaresf = cosw.
The distributions for such a case of modulated correlateonbe derived from the corresponding
distributions for the case of constant correlation by aye@g over a period of. Equivalently,
the averaging can be over, which linearly depends oh The range for averaging overcan
be from 0 torr /2, the half-period of the function cts, as the latter is symmetric. The moment
generating function (MGF) is a linear transformation of pinebability distribution function and
therefore the former can be averaged instead of the latter.

Formally, the averaging over means that is considered as a uniformly distributed random
variable, a nuisance variable to be integrated out.

Two theoretical models, one with constanas in§3.1, and one, in whichp is the cosine of
a continuous random variable as 8¥], are further referred to as the constant correlation model

(CCM) and modulated correlation model (MCM), respectively
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3.4.6 Second moment of normalised intensities

The MGF of the random variabl& in the case of MCM is the average of the MGF5) overw.
Substitutions 46) and Q7) give

2 [2 dw
Lz(t) =— . 99
21 w/o 1—t+ 3(1- p2)t2sirfw 99)
The integration is performed using substitution
1-p2 t2 ,
cotw = \/ 1+ 4 1t cotw (100)
to give
1
Lz(t) = . (101)
VITH/1-t+ i - g
The second derivative of this function is the second momeatfor the MCM,
7 2
£(2%) = +Tﬁ' (102)

This equation can also be obtained by substitution of meareyé(p?) = 0.5 for p? in the
expression fo€(Z?|p), as the latter is a linear function pf, equations46) and 61).

In other words, the second momentszin the MCM and in the CCM withp? = 0.5
coincide. Accordingly, the experimental and simulatedritistions were compared with both
references, see below.

In particular, the second moment @ffor a perfect twin in both models equals 7/4. This
is an intermediate value between the standard referencemtfwinned and perfectly twinned
data, 2 and 3/2, respectively.

The resolution range suitable for twinning tests was chésée 9.0 to 3R using the plots
in Fig. 3.13and following the protocol described §1.2.3 Note that the plot in Figs3.13a)
is not indicative of twinning. This is because (i) the twingifraction is only 0.2 and (ii) the
difference between the twinned and untwinned second moaofehts twice less in the MCM-
twin compared to a twin in which the effect of NCS is absent.

Both the set of experimental intensities and the sets afities calculated using the refined
model of HemH (PDB code 2c8j) were averaged relative to thie dperation to generate per-
fectly twinned data sets. Corresponding plots of the secomchent ofZ against resolution are
shown in Figs3.14a) and3.14(b). Both curves reasonably well match the theoretical pitixafic
of 7/4.

3.4.7 Cumulative distribution of normalised intensities

In the untwinned cased(= +1), the MGF (01) equals(1—t)~! and corresponds to the general

reference for untwinned caset9j.
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For perfect twinning § = 0), the MGF

2
Lz(t) = Jiot2-1 (103)

corresponds to the probability distribution density

4e=2\/Z
and cumulative distribution function
2e%\/Z
P(Z) = 7 (F(1,3,2)-F(1,3,-2). (105)
The latter function is non-linear at smal)
P2) = 27} y OZ}) (106)
N .

Although the first term of this expansion differs fraff, the first term of the twinned distribution
for the CCM 62), the qualitative criterion of non-linearity of twinnd®(Z) for smallZ remains
valid in the case of the MCM.

The function (05 was calculated using a power seriesZoéind is shown by dotted lines
in Figs.3.14(c) and3.14(d). In addition, these figures present cumulative distrdngiofZ for
perfectly twinned observed and calculated intensitiebénresolution range 9.0 to 3 These
were the same data sets used in Fy$4(a) and3.14(b); the perfect twinning was simulated by

averaging related intensities.

4 Completeness
1.0
| W
3 0.81
& . N 0.61
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Figure 3.13.Resolution cut-off for twinning tests.

(a) The experimental second momentaofor acentric reflections against resolution.
(b) Completeness ar@-standard against resolution.

The resolution range used for twinning tests in Bid.4is shown by green boxes.
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As discussed above, the two simulated distributions, thévMistribution and the CCM-
distribution withp2 = 0.5 have the same second moments. In addition, all four digtoibs are
very similar in the range of from 0 to 1 used for perfect twinning test; both essentialitatave
signs of twinning are present, a non-linearity at the or{ggigmoidal” shape) and location of
the plot below the reference distribution for untwinnedad&mall differences between the four

distributions are not essential for the qualitative arialys
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Figure 3.14.Perfect twinning tests in the case of OD-twin of type I/B.

(a,b) The second moments @t
(c,d) Cumulative distribution oZ.

The data were averaged relative to the twin operation torgémeerfectly twinned data. The coloured
lines show results for twinned intensities generated from

(a,c) intensities calculated from the refined model of HemH and

(b,d) experimental intensities.

The solid black lines have the same meaning as correspolig#sgn Fig.3.1 The dotted lines represent
the modulated correlation model, the theoretical modehdtlaal OD-twin of type I/B.
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3.4.8 Partial twinning test

The series expansion fé¥(H) is performed starting directly from the probability dibtition
for the uncorrelated casé4). In the current context, the latter equation represergsctndi-
tional probability distribution functiofP(H|w). Substitution 97) and averaging over uniformly

distributedw give the probability distribution function df,

2 [z H dw
P(H) = < .
) W/o v/ 32 sirfw + H2 cow

Expansion into power series of cosand separate integration of each term give

HS T+ 1)) H2\"
P(H):E§<r(?%7)nz!)> <1ﬁ> . (108)

This series is identified as the following hypergeometriaction,

(207)

P(H) = 2F1(3,3, 1,1 - H?3 %) HB . (109)

The special point of this function & = 0 is not removable and the first derivativeR({H ) at
this point is infinite.

Dotted lines in Figs3.15a) and3.15b) are the plots of this function fg¥ = 1 (o« = 0) and
6 = 0.6 (o« = 0.2). The function was evaluated using expansitdg|.

Two approximations were made in the derivations of the MGOMtridbutions, theP2;(1)1
symmetry of the OD-layers was assumed to be exact, and suommater reflections was
replaced by integration. The effect of these approximatiaas evaluated using untwinned
(6 = 0) distributions ofH for three atomic models, including the refined structure efri
(PDB code 2c8j) and two modifications of the latter. Thes¢ribigtions were compared with
the theoretical distribution for MCM and with the theoretidistributions for CCM with vari-
ablep? (Figs.3.15).

One of the modified atomic models was generated followingptioeedure 0%3.4.4and
represented an ideal OD-twin, in which the layers have eRagfl)l symmetry. The sym-
metrisedP2;2,2; model was generated from the PDB model using one of subesitifi the
programZanuda(§4.3) and the layers were translated usit§QKAB The distribution ofH
for this model (green line in Fig.15) matches the theoretical distribution for MCM well and
justifies the replacement of summation over reflections gimtion. The small difference be-
tween the two distributions is explained by the infinite fatstivative of the MCM-distribution
atH = 0, which is impossible in any distribution obtained fromaléte set of intensities.

A copy of the molecule A of the refined model of HemH was fittethi® molecule B using
LSQKABand substituted for B to generate the second modified mauebhich theP2;(1)1

symmetry of the OD-layers was not exact but was less peduttien in the refined model, as
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the contributions from conformational and temperatureadiadifferences between A and B to
the asymmetry of the OD-layer were excluded. The distriloutif H for this model (blue line in
Fig. 3.15) significantly deviates from the MCM distribution towardetiCCM distribution for
p?> =0.5.

Finally, the distribution oH for the refined model (magenta line in F&j15) matches well
the CCM-distribution forp? = 0.5, the mean value g#” in the OD-twin under consideration.
This suggests that MCM model is not a valid reference for idea OD-twin, and, moreover,
the modulation ofp? can be ignored and CCM-model with meathis a proper reference.

The experimental distribution ¢l was computed for partially twinned unmodified HemH
data. In accordance with the results of simulated experisnéme experimental distribution was
compared with a series of distributions for CCM wjih = 0.5 and variable twinning fraction
(Fig. 3.1%0). The experimental curve matched the CCM-reference farrimg fraction 0.2. The

latter estimate for twinning fraction coincided with thdiemte obtained from the RvR plot, a
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Figure 3.15.Partial twinning test in the case of OD-twin of type I/B.

(a) Coloured lines show cumulative distributiontdffor untwinned intensities generated from
(magenta) refined model of HemH,

(blue) the model with two exactly identical molecules in #symmetric unit and

(green) the model with exactly symmetric OD-layers.

The solid black lines correspond to the constant correlatiodel for zero twinning fraction anef in
the sequence 0.00, 0.25, 0.50, 0.75, 0.99 (same as coldoesdn Fig.3.23).

(b) Red line shows cumulative distributionldffor experimental intensities from partially twinned crgist
of HemH.

The solid black lines correspond to the constant corredatiodel for variable twinning fraction (numbers
in front of the lines) ang? = 0.5.

The dotted lines represent the modulated correlation nfodéhinning fraction 0 in &) and 0.2 in b)
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robust estimate based on both experimental and calculattedsities (Fig3.16). Accordingly,
the experimental distribution ¢f was quite different from the MCM-distribution for twinning
fraction 0.2 (dotted line in Fig3.1%), although the latter seemed more adequate given the

large-scale organisation of the OD-twin.

3.4.9 Concluding remarks

The assumption9(7) entails the presence of sectidns= g in reciprocal space in which twin
related intensities exactly coincide. In addition, théed#nces between twin related intensities
in the domaindp — 1 < | < lg + 4l are small and quadratically depend @n The presence
of such domains cause, in particular, the presence of amawable special point ifP(H) at

H = 0 with infinite first derivative. Exactly symmetric sectioas well as the singularity at
H = 0 would disappear, if the assumptipn= s cosw with 0 < s < 1 were used in place of
(97). Inthe new model;c < 1 would account for the perturbation of symmetry in the Oiels.

In reality, the exact symmetry of the OD-layers never océnrthe macromolecular OD-
structures. The asymmetry of the OD-layers can be chaiseteby the r.m.s.d. over®Gatoms
between the OD-layer in the refined crystal structure angyhemetrised OD-layer. This mag-
nitude equals 0.24 for the OD-structure of HemH. The tests with experimental aimulated
data showed that the effect of modulated correlations shbalcompletely disregarded even
with this small asymmetry. Accordingly, the distributionZ andH derived for the constant
correlation model (Figs3.1 and 3.2) were sufficiently good references for the corresponding
distributions in the case of non-ideal macromolecular @t Further tuning of the modulated

correlation model was therefore unnecessary.
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Figure 3.16. Effect of interfering NCS offyin. Red square on the RvR plot corresponds to OD-twin of
HemH. Green points in the background present scatter piatetefrom the PDB (Fig3.3b).
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Another parameter of the OD-structure under consideratiaefines the relative positions
of the OD-layers and the period pfas a function of the indek In the actual crystal structure
of HemH,e = 0.086 and the whole range of indexaccommodates five periods of the function
p. In an imaginary structure with more than ten times smalléhe functionp would be a de-
creasing function of resolution in the whole rangé.ofhe latter structure should be considered
as the structure witlP2,2,2; space group pseudosymmetry. Exact crystallographic syryme
P2;212; would occur in the limiting cases af = 0 (Fig. 3.12) ande = 1/2 (different fully
ordered structure). The pseudosymmetric case would bedtesised by a narrower range of
p and it would be reasonable to expect that the constant atimelmodel would remain appli-
cable. The “constant correlation statistics” of the actdainH data are restored for a different
reason, owing to asymmetry of the OD-layers (Bd.5).

The analysis of twins in the PDB showed that the alignment 6SNand twin axes and
consequent correlation of twin-related intensities aggatteristic for a large fraction of protein
twins (§3.2.5. An OD-twin can be considered as a limiting case of suchswas the correlation
between twin-related structure factors in the ideal ODatvéries in the range from1 to 1 with
the majority of values close to limits. The distributionsandH derived from the constant
correlation model proved to be good references for an OD-awid therefore are likely to be
good references for the general case of twin with inter(eNICS.

Both the twin of the C-terminal domain of gp2-protei§B(3) and the twin of HemH are
twins by metric merohedry. These structures present twerdifit mechanisms through which
an orthorhombic lattice is restored in a monoclinic streetdn the first example, the structural
elements controlling the lattice symmetry are NCS-relateeldimensional filaments spanning
the crystal in two different directions. In the second exmfhese are two-dimensional OD-
layers. A common feature of the two cases is that stronglynidinfinite” associations of
molecules dictate the lattice symmetry, which is highenttiee holohedry of the point group of

the individual crystals.
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3.5 Example of OD-twin by reticular pseudomerohedry

The L-2-haloacid dehalogenase frddulfolobus tokodaiwas studied in the group of Professor
Jennifer Littlechild (University of Exeter). The biocheral and crystallisation experiments
were performed by Dr. Carrie Rye. Diffraction data were eciéd and crystal structure was
solved by Dr. Carrie Rye and Dr. Michail Isupov (PDB code 2yvlildesigned a program for
detwinning and completed refinement. The results were preddy Ryeet al. (2007; 2009).
This crystal ofL-2-haloacid dehalogenase was an OD-twin belonging to arfadily of
type I/A (§1.3). In terms of geometrical classificatiofl(2.]), it was a twin by reticular pseu-
domerohedry, the type of twinning typical for OD-familietgpe I/A. Twinning by reticular
pseudomerohedry cannot be predicted from the lattice petEamalone §1.2.2 and in this
example it was only detected during integration of imagesesthere were more spots than pre-
dicted. Despite a non-zero obliquity angle and becauseeadytmmetry of the OD-layers, it was
possible to accurately detwin the data without precise oreasents of the operation relating
two lattices. This section gives a brief introduction to fieject and describes the morphology

of the twin, and the process of structure solution and deting

3.5.1 Background

The 2-haloacid dehalogenases (EC 3.8.1.2; halidohyd®)asatalyse the hydrolytic dehalo-
genation of 2-haloalkanoic acids to produce 2-hydroxyadka acids. They are only active on
compounds in which the halogen is attached at the C2 posilibe 2-haloacid dehalogenases
have important implications in the biodegradation of tokadogenated compounds from the
environment. Many of these compounds are produced sycdlfigtior use as herbicides and
growth regulators (Allpress & Gowland, 1998) and over 60%e@rbicides contain at least one
Cl atom (Slater, 1982). Owing to the importance of removiatpgenated compounds from the
environment, there has been much interest in dehalogenagmes.

Based on substrate specificity, three different types afdwdl dehalogenase have been iden-
tified. bL-haloacid dehalogenases work equally well on both enamtisraf the haloacid, with
either retention or inversion of the stereochemistry atGBextom positiond- andL-2-haloacid
dehalogenases are specific to only one enantiomer and causesssion in the C2 configura-
tion of the product (Slateet al,, 1997). 2-haloacid dehalogenases can be subdivided imto tw
evolutionary unrelated groups (H#t al., 1999). Group | contains the- andDpL-haloacid de-
halogenases and group Il contains thbhaloacid dehalogenases:-2-haloacid dehalogenases
belong to the HAD superfamily (Pfam PF00702), which alsdudes some ATPases, epoxide
hydrolases and a number of different phosphatases.

X-ray structures are available for two mesophili2-haloacid dehalogenases:DEX YL
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from Pseudomonasp. YL (Hisanoet al, 1996) and DhIB fromXanthobacter autotrophicus
GJ10 (Frankemrt al,, 1991). Both of these enzymes are homodimers, with eachguiaving a
core domain of a Rossmann-fold-like six-stranded parglsheets flanked by five-helices and
a four-helix-bundle subdomain. The monomeric structura pfitative haloacid dehalogenase
(PHO0459) from the thermophilic archae®yrococcus horikoshiOT3 has also recently been
reported (Araiet al.,, 2006).

The dehalogenase enzyme under consideration is 8oliolobus tokodaistrain 7, which
was isolated from Beppu hot springs in Kyushu, Japan in 1983tokodaiiis able to con-
vert hydrogen sulphide to sulphate and grows optimally & KB5n an aerobic acidic sulphur-
rich environment. The genome has been sequenced using thie-gégnome shotgun method
(Kawarabayaset al, 2001). The putative-2-haloacid dehalogenase sequence has been iden-
tified from the genome sequence and has 31% sequence identtipEX YL, 28% to DhIB
and 29% to PH0459. Th8. tokodaiidehalogenase has been cloned, overexpressed, purified
and shown to have haloacid dehalogenase activity. Crystalso complexes, with inorganic
phosphate (orthorhombic form) amdlactate (monoclinic form) have been obtained and anal-
ysed (Ryeet al, 2009). The structure solution and refinement of the monictrystal (Rye

et al, 2007), a twin by reticular pseudomerohedry, is descriledvin

3.5.2 Structure solution

The monoclinic crystals belonged to the space gi@Rith unit-cell parametera = 127.59,
b =5808,c = 51.19A and 3 = 97.23°. The solvent content of the crystals, which contain
two subunits in the asymmetric unit, has been estimated%t 8¢ = 1.96 A3Da ! (Matthews,
1968). The X-ray diffraction data were collected at 100 K até&bury SRS station 10.1 (Cianci
et al, 2005) using wavelength 1.729and a MAR 225 CCD detector and processed using the
programsDENZO and SCALEPACK(Otwinowski & Minor, 1997) to giveRsym = 9.6% and
completeness 97.6% in the resolution range 25 tok1.9

The MR was carried out with the prograsOLREPusing the haloacid dehalogenase from
X. autotrophicugPDB code 1gg5), which has 28% sequence identity t&sthekodaiidehalo-
genase. The MR solution could only be found when the searaehwas trimmed according to
its sequence alignment to the target protein. This wasethouit using the model modification
option of MOLREP(Lebedevet al., 2007). The structure was refined usiRgFMACS5.2 and
the model was rebuilt using the progradoot (Emsley & Cowtan, 2004). Initial refinement
gaveR = 0.42 andRsee = 0.48. After several cycles of manual model rebuilding/refieatn
the model was subjected to tARP/wWARRrotocol (Perrakigt al., 1999). The resulting model

was refined to a crystallographi:factor of 0.21 and aRqee Of 0.27. These still appeared to be
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high as all main-chain atoms of the model were clearly defineglectron density. Moreover,
the solvent structure appeared to be poorly defined andienidit solvent molecules failed to
significantly lower theR-factors. Inspection of the native Patterson synthesisaled a num-
ber of strong non-origin peaks on theaxis (Fig.3.17a). The highest of them had a height of
~ 0.2 of the origin peak. At the same time, there was no translatiblCS in the structure and

therefore no such peaks were present in the Patterson nwayatatl from the model.

L
ORI

XA

Figure 3.17.0Organisation of an OD-twin af-2-haloacid dehalogenase.

(a) A sectionv = 0 of the native Patterson synthesis contoured%t fblue). Vectorg, 2t and 3 define
the positions of non-origin peaks. This figure was prepasgagCoot(Emsley & Cowtan, 2004).

(b) Possible organisation of a crystal fragment including awigacent individual crystals with loc&l2
symmetry, in which OD-layers are related by stacking vextp(orange) and, (green). The interme-
diate layer (yellow) can be assigned to either of the two ected individual crystals. Vectots2t and
3t define the offsets of three consecutive layers from theiitipos in a single crystal. This figure was
prepared usin@OBSCRIPT(Esnouf, 1999).
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3.5.3 Analysis of twinning

An analysis of molecular packing shows that the crystaksine under consideration is an OD-
structure of type I/A 1.3, Dornberger-Schiff, 1956; Nespokt al,, 2004). It is arranged as
a stack of layers which are parallel to the crystallogragiéne (001). The layers are related
by translations; the plane space group of a laye€22(2) (Fig. 3.17). As a consequence
of this layer arrangement, there is the potential for foramabf (polysynthetic) OD twins and
disordered OD structures (Dornberger-Schiff & Dunitz, 396A switch from stacking vector
s1 = cto s ~ ¢+ 0.1a within one crystal forms a twin interface separating twaingally
identical individual crystals (Fig3.17). Layers from different individual crystals are related
by translations, which are in agreement with the observedangin peaks in the Patterson
map. The lattices of individual crystals partially overlapsuch an OD-twin, and therefore the
presence of twinning can be validated directly by a morefahiespection of the diffraction
data. Therefore the data processing was repeated to olthatws®me of the diffraction images
clearly revealed two lattices. Dependent on the startiragierthe autoindexing was peaking up
one or another lattice. This made it possible to confirm thtetrmative lattices have identical
cell parameters.

Fig. 3.18shows an image, in which alternative lattices are cleargnsérhis is not so for
some other images (Fi®.19. In particular, the presence of the second lattice was oibé q
obvious in several starting images and therefore it wamllyitoverlooked. Because of this and
because of the presence of streaky reflections @if) the crystal was initially identified as a
disordered OD-structure with predomination of one of the pessible domain orientations, but
this hypothesis was abandoned when the second lattice wasveld. Fig3.20helps explaining
why some images are less indicative of the second lattiae dbizers. If the incident beam is
alongathen only (partially) overlapped reflections intersectEweald sphere, whereas incident
beam along* results in an image with most of the spots belonging to onlyafithe two lattices,
as in Fig.3.18 Finally, the observation of both second lattice and défssreaks (Fig3.19
suggested that the crystal was partially disordered ODstiviat is a polysynthetic OD-twin

with small volumes of individual crystals.

3.5.4 Real space lattice geometry and classification of thein

Because o€2 symmetry of individual crystals, the twin under considierahas two equivalent
twin elements. These are the two-fold twin axes parallet*t@nd a, as can be seen from
Fig. 3.17b). These can be classified as an irrational twofold twin axismal to a rational

lattice plane, and a rational twofold twin axis normal to mational plane, respectively (Hahn &

Klapper, 2003, p.396, types ii and iii). The individual dls of such a twin have one common
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Figure 3.18.Diffraction image of an OD-twin of -2-haloacid dehalogenase showing alternative lattices.
(a) The whole image with the enlarged area shown by a white bbxc)(Enlarged images with the
predictions corresponding to alternative lattices. Tihyare was prepared usiigENZO (Otwinowski &
Minor, 1997).
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@) (b)

Figure 3.19.Diffraction image of an OD-twin of -2-haloacid dehalogenase showing streaky reflections.
(a) The whole image with the enlarged area shown by a black Erlarged image with clearly seen

diffuse streaks indicating partial disorder.
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Figure 3.20. Arrangement of spots in the reciprocal spaca) The reciprocal-space, a view alobg
The series of close spots parallel to aggsinda; belong to two alternative lattices corresponding to two
different orientations of individual crystals forming alpsynthetic OD twin by reticular pseudomero-
hedry with twin index 10 and with obliquity angleld. Owing to systematic absencedda, reflections
with even and oddh will only appear in sections with even and okldrespectively. The axes of the two
equivalent twin operations coincide with the axésanda. The overlap between reflections from alter-
native lattices occurs only if the two reflections have thes@ndexh andh ~ 10n. Because of non-zero
obliquity angle, spots witlh = 10n do not overlap exactly except for= 0. (b) If the reflections have
the same size, the overlap is a periodical functioh ahd does not depend érandl.
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rational plane in the real space (and also one common ratba@e in the reciprocal space),
but there is no three-dimensional coincidence lattice. &l@x; it is common practice to use the
term twinning by reticular pseudomerohedry and to classifgh twins in terms of approximate
lattice coincidenceij.e. to assign twin index and obliquitys{.2.1, Hahn & Klapper, 2003,
p.420). The latter classification is useful for X-ray datalgsis, as it characterises in standard
general terms the mode in which the spots from alternatiogpmecal lattices overlap.

The twin lattice is a sublattice of the individual crystattiee, which is (approximately)
invariant relative to the twin operation. The twin latticecdompletely specified by its (approxi-
mately) invariant subsets, the crystallographic direc{approximately) parallel to the twin axis
or orthogonal to the twin plane, and the crystallographémpl(approximately) orthogonal to the
twin axis or parallel to the twin plane. Letandv* be the shortest real and reciprocal lattice
vectors, respectively, corresponding to the above cigstialphic direction and plafeand let

n’ be the scalar product of these vectors, an integer number,
n' = (v, u).

If the twin lattice is exactly invariant relative to the twaperation, theru andv* are exactly
parallel. Therefore the departure from the exact invagdacharacterised by the angle between

these vectors, the obliquity angle

/

COSw = ———.
V¥l

Another characteristics of the twin lattice is the twinilatindexn, which is the ratio of the unit-
cell volumes of the twin lattice and the individual crystattice. This value can be calculated a
follows (Hahn & Klapper, 2003, p.418),

n if n isodd
n/2 if n iseven
Two pairs of lattice vectors can be used in our particulaecas

*

u; = a+ 20c, vi=_C
and
U, = a, v, = 208" — c7,

which are associated with the two twin axes al@fi@nda, respectively. The vectar; can be

found graphically, if the two unit cells in Fi.17b) are expanded into two lattices containing

The vectorsu andv* have integer coprime components in the primitive basescised with the real and
reciprocal lattices, respectively, but may have fracti@mmponents or components with a common divider greater

than 1, respectively, if the basis corresponds to a cenatédd.
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a sufficient number of unit-cell repeats. The veatdis the axis of the zone containing and

b. Becausau; andv] are orthogonal to; anduy, respectively, both pairs result in the same
value for the twin lattice indexy = 10 and obliquity angley = 0.071°. The last angle was the
result for the unit cell parameters fro§8.5.2and the PDB entry 2wl1l. Variation of the data
processing parameters resulted in a small variation in tiitecell parameters. Corresponding
values ofw were 0067 and 0152. The mean of the three measurements is approximately
0.1°. A more precise estimation of was not needed as a related parameteas refined with

the demodulation progran§3.5.5.

Thus the analysis of the unit-cell parameters suggestsmhaire dealing with an OD-twin
by reticular pseudomerohedry with twinning index= 10 and the obliquity angles ~ 0.1°.
This means that every tenth reflection strongly overlap \aitfeflection of alternative lattice
(Fig. 3.20).

The twin index of our twin equals ten and is higher than Malkempirical limit of six
(Le Page, 2002). However this is not a surprise. Small vatdiéwin index and obliquity an-
gle may have structural reasons in, for example, transfiiomand mechanical twins, in which
a three-dimensional pseudosymmetry of the twin lattice @gssociated with a pseudosym-
metry of individual crystal. In our case the twinning is deeattwo-dimensional symmetry of
OD-layer, so the three-dimensional twin lattice is only axfal entity, and its parameters, the
twin index and obliquity angle, are standard but formal paters. Our data are in agreement
with the analysis by Hahn & Klapper (2003, p.421) showing thahe general case Mallard’s

limits have little prediction power.

3.5.5 Demodulation

The geometry of the reciprocal space is shown in Bi@Q@). Under the assumption of
identical three-dimensional profiles of reflections (dismeling the geometry of data collection),
the overlap is a periodic function of indek and does not depend on indideandl (Fig. 3.20).
Owing to the non-zero obliquity, reflections with = 10n, n = 0 do not overlap exactly.
On the other hand, reflections with indice<lose to 1@ partially overlap owing to the non-
zero size of the reflections and the small angle betvegeanda; (Fig. 3.2(). Contributions
from the alternative lattice affect the intensities of teélections withh close to 1@ and cause
modulation of the intensities (Fi§.21b), which results in non-origin peaks in the Patterson map
(Figs.3.17a and3.21d). The effect of twinning by reticular pseudomerohedry amititensities
can be modelled similarly to the case of twinning by merohelirour particular case, in which
overlapping reflections have the same intieand the overlap does not dependloandl, the

equations below can be used, where = It (h, kg, 1) andlt2 = I1(h, ko, 12) are the measured
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Figure 3.21.Demodulation of the diffraction data.

(a) Periodic modulation function (Eqii13) with three harmonics and optimised parameters.
(b) The sum of the measured intensities with given

(c) The sum of the demodulated intensities with givien

(d) Patterson function calculated using measured intessitiehe linev = w = 0.

(e) Patterson function calculated using demodulated intiessin the liner = w = 0.

All functions are shown in relative scale.

Relations between the plotted functions are as follows.di$erete function shown by points ia)(is the
ratio of the discrete functions i) and €). The latter two are Fourier series of the Patterson funstin
(d) and €), respectively. Optimisation of the modulation functi@) yas performed by minimising the
dispersion of the Patterson function alangithin the mask shown by the dotted line id) @nd €).
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(twinned) intensities anth = 1(h,ky,11) andl, = 1(h,kp,I2) are the detwinned intensities of

two overlapping reflections from the alternative lattices,

Ity = (l* a) I1 +aq(h) l>
(110)

lro=(12—-a)la+aq(h)ly
The difference from the case of twinning by merohedry is thatcontribution from the alterna-
tive lattice depends on both the twinning fractierand the overlapg(h).

A good estimate of the twinning fractiam can be obtained by comparing the intensities of
non-overlapping reflections from the alternative lattipesvided that the two sets of intensities
are on the same scale. Although less accurate, an estimateaofalso be obtained using inten-
sities from a single lattice. For example, the reflectionthWwi= 10 overlap with the reflections
from the second lattice, while the reflections wlith- 15 do not overlap. The mean intensity for
h = 10 is about twice larger than the mean intensitytoe 15, as follows from Fig3.20a).
Consequently, the contributions from the two lattices imte: 10 are approximately the same
and therefore the twinning fractiom is approximately 12 (the mean untwinned intensities for
the two values oh are assumed to be approximately equal).

Our twinned crystal appears to be a polysynthetic twin witmgntwin interfaces, as sug-
gested by the lack of well-defined edges. Therefore theithali crystals of this twin appear to
be too small to be cut out for data collection. Deconvolutidmpartially overlapped reflections
during data processing is not yet possible with standartivaoé for protein crystallography.
Therefore, the improvement of integrated data was requarelétwinning procedure taking into
account the non-uniform overlap of the reflections from thie kattices. In principle, this can
be performed using the system of equatioh$Qf. However, it was found that is close to
1/2. Thus, as in the case of perfect twinning by merohedriwidaing would not work for
reflections withg(h) close to 1. Fortunately, detwinning becomes feasible owadntpe inter-
nal symmetry of a single OD layer. The Fourier transform aiugé of the layer’s electron
density has point-group symmetry that includes twin openat This means that overlapping
reflections from the two lattices have very similar inteiesit Moreover, the higher the overlap
the closer the intensities are (inde®d,m with respect to the twin operation for the subset of
reflections withh = 10nis 4.1% for observed and 11.9% for calculated intensitiéd3o, the
less the overlap the less the contribution is from the &ditére lattice and therefore less accurate
estimates for intensities from the alternative latticeragpuired in (10). Thus, for the pairs of

reflections related byl(L0), we assume that
L=l (111)
and (L10) can be rewritten as

It = [1—a+aq(h)]l =§h)l. (112)
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This means that detwinning can be performed by pure demibglulavhere the detwinned in-
tensity is derived solely from the original intensity mplied by a coefficient dependent &in
Similarly to gq(h) in (110), the coefficieng(h) in (112) can be modelled by a periodic function

of h, wheret approximately equals 1/10 and its exact value depends ambiivuity angle,
G(h) = co + c1 cog2nth) + co cog4nth) + . .. (113)

Thus, the detwinning procedure must involve refinemernt, @n which the overlap strongly
depends. The coefficiewy is defined by the equatiog0) = 1, which follows fromq(0) = 1
and (112).

The demodulation was performed using a specially wrig@RTRANprogram. Firstly,
optimisation of the parametetscs, C;, ... (113) was performed by minimising the dispersion
of the Patterson function on the line= w = 0 within a mask excluding an area around the
origin (Figs. 3.21d and 3.21e). This was performed for zero to six harmonics in expansion
(113. Secondly, the original data were demodulated by dividhwyintensities by the corre-
sponding value ofj(h). Subsequently, restrained refinement usRigFMACwas performed
against each demodulated data set, starting each time frersaime atomic model. The best
R = 0.162 andRqee = 0.225 were obtained for the approximatiahil@ containing three har-
monics. The corresponding modulation functigfh)is shown in Fig.3.21(a). The refined
value oft corresponds to an obliquity angle afl@°, which agrees with the values derived from
the unit-cell parameters. The demodulated data gave aet§jesmooth plot ofy, >, I (h, k, 1)
against (Fig. 3.21c) and the corresponding Patterson map contained no strangnigin peaks
(Fig. 3.21e). The demodulated data were used in the final round of modetcion and refine-
ment.

To examine the effect of twinning on the atomic model andtedecdensity, the model from
the PDB was refined against both detwinned and original tedrofata with all other refinement
parameters being identical. In spite of differéfactors R = 0.193 andRjee = 0.258 for
twinned andR = 0.159 andRy.e = 0.220 for detwinned data) no significant differences in the
electron density could be seen and neither atomic coomlinabrB-factors were significantly
different in the two refined models (the r.m.s.d. was GAdér coordinates of € atoms and 1.6
A2 for B-factors of all protein atoms). With water and two lactatelenales removed, refine-
ment against the two data sets, original and demodulate€alex minor differences in the two
resultant maps at the positions of the removed atoms. licpkat, the density for the O3-atom
of the lactate of chain A was almost missing. This obsermasaonsistent with poorly defined
solvent electron density after initial model building amfimement before twinning was noticed.
We therefore anticipate that detwinning in cases like thisgrovide a small improvement in the
refinement and help manual or automated model building buhat be critical for the quality

of the final model.
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3.5.6 Concluding remarks

The OD structures with a large number of twin interfaces aresiered as partially disordered
OD structures (Dornberger-Schiff & Dunitz, 1965). Theyguioe elongated streaky reflections
on the diffraction images. Apparently, we have a case thatésmediate between a polysyn-
thetic OD twin and a disordered OD structure, as diffuseakBeare present in some images
(Fig. 3.19. Nevertheless, the demodulation procedure remainscaiydi to such cases (Wang
et al,, 2005).

Macromolecular crystals are characterised by a clearlyeéfhierarchy of building blocks
and by the different strengths of interactions between tHgmcause of this, protein crystals are
frequently composed of symmetric layers with asymmettierfaces between them. In some of
these cases there is the potential for the formation of ODgwly reticular pseudomerohedry.
The procedure described above is applicable to the majofiguch twins: (i) the exact twin
operation can be identified based on the organisation ofystat and (ii) higher symmetry
of OD layers can be further utilised to reduce detwinning t&iraple demodulation, thereby
avoiding the problem with singularity at= 1/2.

In the case under consideration the detection of twinningdticular pseudomerohedry
involved two steps, inspection of the Patterson map andtieteof the alternative lattice. This
is a quite general and practical approach. The inspectidgheoPatterson map is a quick test
that immediately excludes irrelevant cases. The check rioalternative lattice is necessary
if non-origin peaks are found in the Patterson map, as theakspcan be due to twinning or
pseudotranslation. The alternative approach, prediafdwinning from unit-cell parameters
and Mallard’s limits (Le Page, 2002) is not sensible for gitotwins as demonstrated by Hahn
& Klapper (2003, p.421) and confirmed by this particular cafsevinning with the twin index

of ten.
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4 False-origin MR-solutions

In the case of translational pseudosymmetry, the vectatimngl equivalent origins in the true
space group also relates equivalent origins in the pseadogjry space group with smaller unit-
cell. However, the inverse statement is not in general corietranslation relating origins in a
pseudosymmetry space group may convert the structure faleeastructure, in which some of
the NCS axes become crystallographic ainé versaand one of the pseudo-origins becomes the
crystallographic origin. If the TF had picked up such a falskition, the subsequent refinement
would stall at high values d® andRye despite misleadingly good quality of the electron density
maps. Such false structures are here referred to as fage-structures, or false-origin MR-
solutions.

The first two sections of this chapter describe two caseshintwfalse-origin MR-solutions
were encountered in the course of structure determinativeach case, the analysis of pseu-
dosymmetry and possible methods of resolving the falsgiroproblem are presented. To au-
tomatically handle the false-origin MR solutions, as wellather cases of incorrectly specified
symmetry, | have developed the progrdiemuda which is described in the third section of this
chapter. The program was successfully used to correct thengyry assignment in a compli-
cated case in which both NCS by translation and NCS inteidewith twinning were present

(84.4). An OD-structure of type I/A with yet another type of spacewgp ambiguity is analysed
in (54.5).
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4.1 Structure solution of anti-TRAP (continued)

The structure solution of anti-TRAP frofacillus licheniformiswas presented i§2.2 The
correct model of the dodecamer was obtained using an NCSradmed exhaustive search and
four dodecamers related by translational NCS were locat#itei asymmetric unit of the crystal
using the conventional TF. Later analysis showed that thisafalse-origin MR solution, where
a pseudo-origin ata + c¢)/4 was incorrectly assigned as the crystallographic origime false
structure was refined and the true structure was found ubmgefined dodecamer as a search
model.

This section presents the comparison of the true and falgatrstructures in terms of crystal
packing, location of symmetry axes and refinement behavi®assible reasons for the MR
failure to find the true solution at the first attempt and mdghfor correction of the false-origin

solution are discussed.

4.1.1 Organisation of the crystal

This crystal structure has symmet2; and unit-cell parameters = 1185 A, b = 99.9 A,
c=1232A, 8 = 1176°. The crystal asymmetric unit contains four dodecamers paihwvise
differences in their orientations ranging from 4@ 7.6°. The superposition of one particular
pair of dodecamers by translatiéa + c)/2 is shown in Fig4.1(a).

The crystal is assembled of layers, one of which is showndn4zi(b). Each layer is gener-
ated by crystallographic symmetry applied to two dodecamigach layer is symmetric relative
to the crystallographic translatiomga + ¢) + mb. All other crystallographic translations relate
odd layers with odd layers and even layers with even layedjadent layers are related by an
NCS translation vectors0.13b + 0.50c, illustrated by the Patterson map in FRy2(b). This
NCS translation can only roughly be approximated by half ofystallographic translation and
does not cause problems with the MR. At the same time, theaulele A and B in Fig4.1(b),
the individual layers and the whole structure can be welksomposed with their copies trans-
lated by(a+c)/2. This superposition is mostly perturbed by small diffeeem the orientations
of dodecamers (Figt.1a).

The space group generated by addition of the pseudotremms(@t -+ c)/2 to the true space
group has an equivalent crystallographic origir{at- c)/4, which is not an equivalent origin
in the true space group. The shift of the asymmetric unit émaes A and B in Fig4.1b and
molecules C and D with similar relative location in adjackyker) by (a + c)/4 generates the
structure (Fig4.1c), which is similar but not identical to the original strucwowing to altered
symmetry/NCS relations between contacting molecules. rfhss.d. over € atoms between
the two structures is 1.8 (this is half of the r.m.s.d. betweeni® and A+B translated by
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(a+c)/2

@ (d)

Figure 4.1. True and false-origin MR solutions of the crystal structofanti-TRAP.

Molecules (dodecamers) are shown by &oms. Molecules related by crystallographic symmetry are
shown in the same colour. Crystallographic and NCS two-$ol@w axes inlg, c,d) are shown by solid
and dashed black lines, respectively. The unit cells aresshioy thick black lines.

(a) Superposition of NCS related molecules A and B by trarstgig + ¢) /2. The r.m.s.d. for € atoms
is 2.55A.

(b) One of two independent molecular layers of the true strectu

(c) Asingle layer of the false-origin structure. This struetbelongs to the same space group and has the
same unit cell parameters a,(but symmetry relations between contacting dodecamerslifferent.
Crystallographic and NCS axes are permuted in the two strest

(d) A single layer of the symmetrised structure. The asymmetnit of this layer was obtained by
averaging atomic coordinates of molecule B and moleculefteshby (a+c) /2. This structure possesses
higher translational symmetry and the unit cell volume itvé@d. All axes are crystallographic. The
choice between two origins, which are equivalent in the boadl, translates into the choice between the
true and false-origin structures in the large cell.
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(a-+c)/2). The incorrect structure can also be considered as dwteun which crystallographic
and NCS axes have been permuted (crystallographic syminetame NCS andice versa.

The difference between the two non-equivalent structusesiall and, therefore, it is not
surprising that the TF failed to select the correct one. Meee the model of the dodecamer
used in the second step of the MR (2) was imperfect as it was built from the trimers aligned
according to broad peaks in the SRF. The error propagatdiet€RF that saw no difference
between the orientations of the NCS-related dodecamesse(tiere no split CRF-peaks until
the false-origin model had been rebuilt and refined) andhéurto the TF to make it insensitive to
the difference between the true and false structures. Thieelf the origin was in effect done
when the first oligomer was positioned. The low completeédsis model further contributed
to the decrease in the overall contrast in the TF. Howevés,ishnot the whole story. It may
happen that a partial model, even a perfect one, gives & loettelation coefficient in a false-

origin position §4.2.9.

4.1.2 Test refinements on the two origins

A copy of the asymmetric unit of the true structure was stitby the pseudotranslation vec-
tor (a + c)/2, dodecamers A and C renamed to B and D wice versa and coordinates of
corresponding atoms of the fixed and moved copies of thetateiavere averaged to generate
the symmetrised structure presented in Big(d). The symmetrised structure belonged to the
space grou2; and had a halved unit cell, as it was exactly symmetric reddt the translation
(a+ c)/2. Accordingly, all the NCS two-fold screw axes in the trueisture turned into the
crystallographic axes in the symmetrised structure.

It is worth mentioning that similar symmetrised models wbbk in effect tested by the
TF in its mode of simultaneous search for molecules relayetlamslational NCS§1.1.19, as
long as the peaks in the Patterson map at the half of a ciggtaphic translation are not split
(Fig. 2.2b). With such a search model the distinction between the tiasradtive structures is
impossible.

Two structures with the correct unit cell were generatethftbe symmetrised structure, the
structure with the correct origin (Fig.1b) and the false-origin structure (Fig.1c). The choice
of the origin defines which of the two-fold screw axis is cafistgraphic in the large unit cell and
which subsets of molecules are treated as related by dogri@bhic symmetry. This inevitably
affects refinement: in the first case the model can convergfeetaorrect model of the crystal
structure, but in the second case such convergence is iif@ss

Rigid-body refinement (22 cycles) and then restrained nefere (10 cycles) were per-

formed for each model usilgEFMAC Before refinements, the two structures were internally
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identical and effectively had a smaller unit cell. Both theetand the false symmetry constraints
were satisfied in both of them. However, during the refinemené of two sets of symmetry
constraints was in effect relaxed and the two structuresrged. TheR-factors and electron
density maps of the true and false-origin structures aftstrained refinements are compared in

Fig. 4.2 TheR-factors are very different and clearly indicate the cdrreodel, whereas some

Falsestructure

Truestructure
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Figure 4.2. Electron density maps ani-factors for true and false-origin structures of anti-TRAP
(Figs.4.1b and4.1c, respectively) after 20 cycles of rigid body refinement afdc§cles of restrained
refinement withREFMACstarting from the same symmetrised structure (&i@d) with corresponding
choice of origin. Two corresponding fragments are showrefioh map at the contour level of 0475
The top fragments seem to be of comparable quality, wheheas ts a gap in the density for the main

chain of the false-origin structure in the bottom fragment.
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corresponding fragments of the two maps seem to be of a siymgjaod quality. However some

other fragments of the electron density from the false tirecare so much distorted that even
the main chain atoms are not in the density. Neverthelessintharpretable fragments of such
maps can be used for partial correction of the mog2l2.3 and may cause an impression that

the model is in general correct but needs further improveraed refinement.

4.1.3 Comments on restoring the true structure

The electron density for the false structure was good entmigebuild individual dodecamers
almost to their final appearance in the actual course oftstri@letermination. The new do-
decameric search model was sufficient for the MR to distsiglietween the true and false
origins. However, the awareness of the possibility of falggin solution might have simplified
this work dramatically and would have saved time spent ienapts to reduce thB-factor by
model improvement. The first step that should have been tailder just after the MR was the
comparison of two rigid-body refinements, with the MR-moalet! with the MR-model shifted
by (a + c)/4. Because of the high similarity between the search andatiuyett proteins, it
seems likely that the correct model could have been idedtiftethis earlier stage of structure
determination.

Further experiments with correction of symmetry usanuda(§4.3) showed that the se-
ries of refinements on alternative origins and space graapng) from the symmetrised model
do not necessarily succeed in indicating the true structlihe same effect could be expected
for a poor MR-model and, therefore, some rebuilding and eefient of false-origin structure
could be a necessary step in identification of the correactire. The experience with the
anti-TRAP structure solution demonstrated that such maaalilding and refinement are fea-
sible. Moreover, the refinement can be performed againsttheced data corresponding to the

pseudosymmetry space group with a smaller unit cell (Oksanal., 2006,51.1.15.
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4.2 Structure solution of GAF domain of CodY

CodY protein fromBacillus subtiliswas studied in the group of Professor Anthony Wilkinson
(YSBL). The crystals of the GAF (N-terminal) domain of Cod the apo form were grown,
and the structure solved by Dr. Elena Blagova and Dr. Vladimivdikov (PDB code 2gx5;
Levdikov et al, 2009). | helped with the correction of symmetry and used #tiucture in
further false-origin related tests.

In this case there were two possible space groups with twonaltive origins in each. The
correct structure was established by rigid body refinenreRtifollowed by merging the refined
structure relative to the two-fold rotations giving the dlest r.m.s.d. over € atoms. More
details are given i§4.2.3

This section presents details of the structure deternoinand the discussion on possible
approaches to the structure correction: refinements indatedgroups and origins starting from
the symmetrised structure, and MR with the dimeric and sirsgibunit search models. The
discussion is illustrated by drawings demonstrating tlvation of symmetry elements in four

alternative structures.

4.2.1 Background

The crystal of the apo CodY GAF-domain belonged to the spaoepdP4322 with unit cell
dimensionsa = 90.2 andc = 2056 A and diffracted to 1.74. The crystal had translational
pseudosymmetry with translation vecti2 and the r.m.s.d. over the related @oms 1.8A.
The asymmetric unit contained four subunits.

The initial MR solution for the apo CodY GAF-domain crystaiusture was found by Dr.
Vladimir Levdikov. Search models were generated from tlystat structure of the CodY GAF-
domain in complex with isoleucine (PDB code 2b18; Levdilehal., 2006).

The asymmetric unit of the holo-structure contained onasitjowhich formed a dimer with
a symmetry related molecule. After the solution of the amwrf, it was found that the dimers
in the holo and apo structures were topologically identibalvever, the relative orientations of
subunits in the two dimers differed by 24As a result, an attempt to solve the crystal structure
of the apo form using the holo-dimer as a search model hastfail

The MR using a single subunit was successful, but it was navialttask because the apo
and holo forms of the protein had significant conformatiadifferences and, in addition, even
the complete subunit comprised only a quarter of the asymunatit in the crystal of the apo
form. Various options oMOLREPwere tried with different truncated versions of the subunit
One of the MR runs ifP4,22 gave a structure formed by dimers topologically simidedimers

in the holo structure. A significant drop Bfee during the initial refinement witREFMACand
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interpretable electron density were additional evidemedavour of this solution. The electron
density was good enough to partially correct the model. Hewthe refinement stalled at &

factor of about 0.38 and it became clear that this was a falsgien.

4.2.2 Organisation of the true and false structures

At this point of the text, it seems suitable to describe thalfstructure and to characterise
possible false MR-solutions. A similar analysis was perfed in the actual course of structure
determination to understand which alternative structurexe to be tested.

The molecular packing is presented in Big(a). The crystal is formed by cylindrical as-
semblies of molecules spanning the whole crystal ircttigection. The approximate symmetry
of a single cylinder includes an eight-fold screw axis alang a two-fold axes orthogonal ¢o
One quarter of all symmetry operations of the cylinder agestetlographic operations in the
three-dimensional crystal.

Two drawings in Fig4.3(b) show two neighbouring slices of a single cylinder, suclt tha

each slice include a pair of biological dimers residing oa #ame NCS two-fold axis. The

TrueP4522 TrueP4522 FalseP45;22 FalseP4,22 FalseP4,22

z=1/8

Figure 4.3. Crystal structure of GAF domain of CodY and associated fstisectures.

(a) Overall organisation of the crystal. The unit cell is shawmagenta.

(b) Two slices of the molecular cylindrical assembly, eacbestiontaining a pair of dimers residing on

the same NCS axis and related by a crystallographic tworfghtion.

(c,d,e) Reassignments of crystallographic axes (solid blacks)irmaad NCS axes (dashed black lines)
result in three possible false structures.

In all panels of this figure, the subunits related by crystathphic symmetry are shown in the same
colour and NCS translatiory 2 relates red to yellow and green to blue substructures.
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dimers in the pair are related by the crystallographic teld-Bxis in the plane of the drawing
and by the NCS two-fold axis orthogonal to this plane. Thaealt pairs of dimers are rotated
relative each other by 45 Thus the crystallographic axis makes a half-turn by tha fifiir, so
the first and the fifth pairs are related by an NCS translatfary® and eight pairs span the unit
cell.

Letting the axes in the bottom drawing of Fg3(b) exchange their crystallographic nature,
i.e. letting the crystallographic axes become NCS waicé versaresults in a different structure
shown in Fig4.3(e), which however would have the same unit cell parametergpaaddosym-
metry space group as the original structure. All structuedsted by such permutations of the
crystallographic and NCS axes can be enumerated by comgjdero adjacent pairs of dimers,
as the crystallographic axes relating the subunits in thass (plus translatio@) are genera-
tors of the space group. Two possibilities for each of twagegsult in four possible structures
belonging to two different space groupd:22 andP4322 (Figs.4.30-€). The origin for a given
combination of crystallographic axes is defined by the stethdetting of the corresponding
space group.

Therefore, similarly to the anti-TRAP case, the presendeaoflational pseudosymmetry in
this example creates a potential for false MR-solutiongdnicular, a false-origin MR-solution
is possible in the tru®4322 space group (Figt.3c). In addition, two false MR-solutions are
possible in the enantiomorphic space gré¥a22 (Figs.4.3d and4.3¢). A particular solution
can be identified by the crystallographic nature of the tald-Bixes relating the subunits in the
biological dimers. In practice this can be done by examitfregfour subunits forming the asym-
metric unit using molecular graphios,g. Coot The number of subunits making the biological
dimer with their own symmetry equivalents and, if this numeguals two, the orientations of
such subunits uniquely define one of the four possible strastshown in Fig4.3, where this
number equals zero, four, two and two b),((c), (d) and €), respectively. Such an analysis was

used to identify the solutions obtained in the test MR runs.

4.2.3 Structure correction using refinement inP1

Rigid body refinement in thB1 space group followed by the restoration of the higher syimme
seemed a promising technique from the point of view of autmmaof the false structure cor-
rection in the general case. Therefore, this method wasingbd actual course of the structure
solution of the CodY GAF-domain.

The P4,22 model and the data were transformed into a smaller udi{cek c/2, space
groupP4,22) to produce a synthetic structure, in which all the axesvshin Fig.4.3(b) (both

crystallographic and NCS) were crystallographic. The rssp was restrained refinement of
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the synthetic structure. This was done to eliminate inflaeoicwrong crystallographic con-
straints,i.e. to move the structure away from the local minimum of the faigkition, towards
the structure, which equally well matches all four alteiv@astructures (Figst.3b-€).

The refined structure was expanded iRtb with correct cell dimensions and rigid body
refinement was performed to drop tRefactor from 0.64 to 0.38. After that, the potential crys-
tallographic axes (Figd.3) were tested by visual inspection of the overlap betweestiueture
and the copy rotated by the tested operation. The transfumnsawere performed by match-
ing two subunits usingtSQKAB(Collaborative Computational Project, Number 4, 19990t
(Emsley & Cowtan, 2004) was used to visualise overlappingcsires. The axes giving the
best overlap (visually this overlap was almost exact) ssiggethe organisation of the crystal
as illustrated in Figs4.3(a) and4.3(b). The redundant molecules were removed and the new
structure was transformed into and further refined in theesgaoupP43;22.

In effect, the method used here allowed testing of more tharfdur alternative structures
shown in Fig.4.3. It also ruled out the possibility of lower symmetry and twimg, which
was hard to reject with confidence from the twinning testsljilkaffected by pseudosymmetry.
This was done at the expense of some extra manual work atéfe sf testing the potential
crystallographic operations, but this was an acceptalite for the confidence in the correct

symmetry assignment.

4.2.4 Structure correction using the MR with a dimeric model

It is typical to start the MR trials from the available oligent models. In this particular case,
the trials with the holo-dimer failed owing to significantnformational differences between
the holo- and apo-dimers. Interestingly if these attempsevsuccessful, the correct structure
would be found and the potential problem with the false MRR#son would not be noticed.
Indeed, the only configuration in which the asymmetric uait be assembled from complete
dimers is the correct one shown in EFig(b). Furthermore, a dimer from the refined false-origin
structure could have been used as a search modE4;RP it gave a CC of 0.45 for the correct
structurevs.the second best CC of 0.32, whereaP422 the best CC was 0.35. Note, however,
that such high contrast is only because of the packing ainttrand it would have arisen even
if the configuration in Fig4.3(b) were incorrect. Had the correct configuration been anyrothe
than that in Fig4.3(b), such an approach would only replace one false solutionnoghar.
Because the CodY GAF-domain structure was a particulafficdit case for refinement owing
to high flexibility of the protein, it was important to haverdmence in the symmetry and origin

assignment, but this could not be gained with this method.
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In general, the presence of translational pseudosymmetkgsmany oligomeric search mod-
els vulnerable to false MR-solutions. If such model is used aearch MR-model, then space
group or origin correction may need to be considered at sooiv@ pf structure refinement.
The crystal structure of human deoxycytidine kinagkZ.3 Elisabetta Sabini, personal com-
munication) is an example of a crystal with pseudotrar@fatin which two of four symmetry-
independent subunits form a single dimer and two other stefarm dimers with their symme-
try mates, so a configuration with two complete dimers in thgranetric unit must be a false
structure.

Note, however, that in the case of anti-TRAR.Q), the asymmetric unit of the pseudosym-
metry space group contained two complete dodecamers andsthef dodecameric search
model derived from the refined false-origin structure in #eeond round of the MR was a
valid procedure in the sense that it did r@opriori reject any of the possible configurations.
Moreover, even if one of the two-fold axes of the dodecamerevedigned with the crystallo-
graphic two-fold axes, this procedure would remain val&llang as the crystallographic axes
were screw axes. In other words, from the point of view of iarigprrection, the MR-search
with the dodecameric model in the case of anti-TRAP is théogn@ of the MR-search with
a single-subunit model in the case of CodY GAF-domain. Thublems associated with the

“single-subunit” search model are discussed below.

4.2.5 Structure correction using the MR with single-subuni model

Table4.1presents the results of the MR searches for the first copyed®tdY GAF-domain (no
fixed partial model) with two search models, a single subwoih the refined false structure and
subunit A from the final structure deposited in the PDB. Twasraf MOLREPwere performed
for each model and for each of two possible space group, arrtinei “single model” mode
and a run in the “double model” mode, which implicitly dealghwthe model composed of two
subunits related by NCS translatidii(1.19. The position of the first found molecule relative to
the crystallographic axes defines the positions of the neimgimolecules. Therefore, these data
are sufficient to identify which configuration is going to lmaihd at the end of the one-by-one
MR search for four subunits.

It may seem strange that in the “single-model” search the®€ss higher inP4322 (0.273)
than inP4,22 (0.253) for the search model refined in the incori&i22. However, these are
the correlations for the first subunit found, whereas the ehcgfined inP4,22 was complete
and contained four subunits. Moreover, the refined modelpaatially rebuilt and was much
closer to the final than to initial model. The best CC for thenptete MR solutions was almost

the same in the two space groups (0.45&422 vs. 0.457 inP4,22) because both solutions
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were incorrect, the one in the corrde4;22 being a false-origin solution defined by incorrect
position of the first subunit found. A bias towdpPd,22 was only revealed in the CC for the true
TF solution in the “single model” mode (coluninin Table4.1). It ranks second among all the

TF peaks shown for the final model but only fourth for the redingodel.

This effect can be explained as follows. The cross-vecteta/den two given subunits are
enhanced in the experimental Patterson map by corresgprdators from the subunits related
by NCS translation to the first pair. However, the closer thieusits are, the more consistent
cross-vectors are generated. Accordingly, the most famer(in terms of CC) position for the
single subunit (among the sensible positions) is wherecloisest to its symmetry mate, that is,
in the symmetry-generated dimer. Indeed, the subunit ihigieest-score solution was found in
such a position. On the contrary, such a position did not @xithe true structure, in which all
dimers were formed by independent subunits. This condideralso explains why the initial
MR-solution of CodY GAF-domain was found in the incorrecasp group, while the same
model, or any other, gave no solution in the correct spacepgro

As it was mentioned in the anti-TRAP section, the “doubledeid TF in the case of two-
fold pseudotranslation effectively tests symmetrisedcstires with two times smaller cells and
makes no distinction between crystallographic transtatiod pseudotranslation. Accordingly,
it returned the same CC for all four possible configuratiorable4.1). In effect, the “double-

model” TF ignores all reflections withodd and is equivalent to the “single-model” TF in two

Space group P4322 P4,22

Figure 0 (© - @) (€ -
Model refined inP4,22

Single-model TF CC 0.249 0.273 0.233 0.253 0.252 0.226
Double-model TF CC 0.343 0.343 0.296 0.343 0.343 0.296
Final model

Single-model TF CC 0.277 0.297 0.228 0.274 0.276 0.224
Double-model TF CC 0.369 0.369 0.315 0.369 0.369 0.315

Table 4.1. MR with the single-subunit models of CodY GAF-domain, onleetafrom the refined false
structure and the other from the final model (PDB code 2gx5).

For each of two search models, the MR was performed in the haat@morphic space groups and with
two modes of the TF, the “single-model” mode and “double-eibohode.

The correlation coefficients (CC) are presented for theettwp TF solutions for the first molecule to be
positioned (“single-model” mode) or for the first pair of reolles (“double-model” mode). For two top
peaks, entriesa), (b), (c) and () relate to the corresponding panels of g3 The third peak is the
highest background peak.
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times smaller cell and with reduced data set. With this mddin@® TF, the choice between
alternative configurations is explicitly postponed tilbsequent refinement.

These tests simply underline the fact that the MR producelnminary results that should
be confirmed by subsequent refinement and it is not the MR Enereent that should be con-

sidered for making the final choice between several closetsires.

4.2.6 Structure correction using refinements of alternatie structures

If the possibility of twinning is ignored, then there arefdur structures to test by refinement
and there is no need to reduce the model and the dat@intw any other space group and to
change the orientation of the whole structure.

Table 4.2 presents the results of rigid-body and restrained refingsnanthese four struc-
tures. In all four cases, the startifgfactor in the rigid-body refinement was 0.63. The final
R-factors clearly indicated the correct structure (Higgo).

The starting models for the refinements were generatedlasa/®IThe “double-model” MR
was completed in th€4,22 space group for the subunit from the refined false stractiihe
output model contained two pairs of subunits related by Ni@8slationc/2. Such an asym-
metric unit can be “docked” into any of the four tested configions without overlaps between
symmetry related subunits (this is not so for the asymmetnit containing, for example, a
complete dimer). Therefore, the first starting model wasMiRemodel, the second model was a
copy of the first one withP4,22 replaced by4322 in the header of the coordinate file (an extra
MR run in P4322 could be performed instead), and the third and the foudtiels were copies
of the first two shifted by/4 usingLSQKAB

Space group P43;22 P4322 P4,22 P4,22
Figure ©) (0 (d) (e
true false false false

Rigid body refinement

R 0.44 0.52 0.48 0.48
Restrained refinement

R 0.30 0.40 0.38 0.38
Riree 0.38 0.50 0.47 0.46

Table 4.2. Refinements of the crystal structure of CodY GAF-domain amed associated false-
origin/enantiomorph structures. In each case, referenogaide to the corresponding panel of Hg.
Rigid-body refinements started from effectively the sammmsetrised structure and restrained refine-
ments started from the models after rigid body refinements.
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This protocol is easy for both manual implementation an@rmation, as the asymmetric
unit is neither expanded nor reduced and its orientatioranesrthe same in the tested structures.
However, the automated procedure of symmetry correctiop mead to be more general and
able to deal with pseudosymmetric twins and to restore thstalfographic symmetry of a

structure refined in lower space group.

4.2.7 Concluding remarks

The cases of anti-TRAP, CodY GAF-domain and UDP-glucospirherase (PDB code 2c20;
Au et al,, 2006, not included in this thesis), as well as the exampl@scorrect space group
assignment from the PDB3.2.4) suggested that a program that would automatically vehniéy t
symmetry and origin assignments and correct them if nepessight be useful.

The method of structure correction that involved refinemer®l performed well in the
cases of CodY GAF-domain and UDP-glucose 4-epimerase amdesksuitable for a variety
of pseudosymmetry cases and for cases with incorrectlgrsdispace group. In effect, this
approach allows evaluation of all possible subgroups ofpgeudosymmetry space group, so,
in particular, it is able to distinguish between pseudoswtmyninterfering with twinning and
higher symmetry, as well as between true and false origite dutomation of this approach
required a program determining (pseudo)symmetry spaagpgubthe structure defined Al
and evaluating potential crystallographic operationsuichsa structure. Such a program was

written and is discussed in the next section.
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4.3 Zanuda, a program for symmetry validation and correction

The progranZanudapresented in this section is designed to validate and dasy®emetry and
origin assignments. It was developed in the group of Dr. Mudev (YSBL); | wrote the=OR-
TRANToutines and combined them withteshscript, and Dr. Paul Young developedlava
interface for the YSBL-software web-server (http://wwsbfyork.ac.uk/YSBLPrograms/).
Three types of target cases are characterised, then thentwersion of the program is
demonstrated using the test cases of CodY GAF-donfgi®)(and, finally, some technical

details of the program and possible improvements are discls

4.3.1 Target cases

The first class of cases thazinudais designed for includes the structures with translational
pseudosymmetry, such as anti-TRAMR.Q) and the CodY GAF-domairg4.2), in which false
MR-solutions are possible with the same point group synmyreetid unit cell parameters as in
the true structure. The warning signs are higgfactor and the presence of significant peaks in
the Patterson map corresponding to a rational fractionystaliographic translation.

The untwinned cases with incorrectly assigned lower symneeinstitute the second target
class. A large number of such cases were found during thetséartwins in the PDB using
RVR scatter plot§3.2.4). This type of mistake does not affect significantly and magneslightly
improve the refinement statistics. One of the reasons fdn sustakes is that higR-factors
from a false-origin MR solution has been erroneously irmeigdl as an indication of twinning.

The third class includes twinned cases with interfering N{©8 with an incorrectly as-
signed higher symmetry. An example is presented in the reetion §4.4), the crystal structure

analysis of oxidoreductase frolfhermotoga maritima

4.3.2 Zanudarun with test case

The pseudosymmetry operation is a global operation on agitracture, which matches related
molecules with a high accuracy but not exactly. The pseudasstry space group (PSSG) of a
given structure is a space group that includes all exact stnyroperations and all pseudosym-
metry operations on the structure.

For example, the crystal structure of the GAF-domain of C¢¢#2) belongs to the space
groupP4522 witha = 90.2 andc = 2056 A. The PSSG is generated by pseudotranslatjth
Therefore the PSSG R4,22 with the samea as in the true space group antlalved.

Zanudahandles a set of subgroups of the PSSG (details &4.813. Different subgroups
may belong to the same abstract space group and are theas&igned an internal reference
number. In the current example, the PSSG has Ref 35 (Figand 4.5).
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Step 1.

| Subgroup | Spacegroup | R.m.s.d. | Refinement in tested group |
| | | from the | |

| Ref | | starting | Rigid | Restrained |
| | | model, A | | |

| | | | R | R | R-free [
I I I |- I I I
| >> 10 | P41 2 2 | 0.0003 | -- | 0.3808 | 0.4585 |
| << 35 | P 42 2 2 | 0.6756 | -- | -- | -- |
Step 2.

| >> 35 | P42 2 2 | 0.6756 | -- | -- | -- |

| 1 | P 1 | 1.0868 | 0.3534 | 0.2926 | 0.3658 |
| 2 |C121 | 1.0849 | 0.3553 | 0.2941 | 0.3692 |
| 3 | P1211 | 1.0851 | 0.3571 | 0.2944 | 0.3648 |
| 5 |CcC 2221 | 1.0841 | 0.3600 | 0.2973 | 0.3721 |
| 6 |P121 | 0.2069 | 0.4092 | 0.3710 | 0.4543 |
| 7 | P 41 | 0.7583 | 0.4210 | 0.3677 | 0.4399 |
| 9 | P2221 | 0.2051 | 0.4149 | 0.3754 | 0.4575 |
| 10 | P41 2 2 | 0.1828 | 0.4181 | 0.3779 | 0.4618 |
| 11 | P121 | 1.0865 | 0.3566 | 0.2951 | 0.3677 |
| 14 |P121 | 0.9723 | 0.4340 | 0.3857 | 0.4711 |
| 16 | P222 | 0.9713 | 0.4478 | 0.3938 | 0.4835 |
| 17 |CcC121 | 0.9965 | 0.4215 | 0.3776 | 0.4555 |
| 19 |C 222 | 0.9753 | 0.4442 | 0.3885 | 0.4768 |
| 22 | cC 2221 | 0.9949 | 0.4284 | 0.3805 | 0.4615 |
| 26 | P2221 | 1.0861 | 0.3619 | 0.2989 | 0.3701 |
| 29 | P41 2 2 | 0.9895 | 0.4305 | 0.3815 | 0.4578 |
| 31 | P 43 | 1.0844 | 0.3573 | 0.2948 | 0.3660 |
| 32 | P43 2 2 | 1.0841 | 0.3656 | 0.3017 | 0.3771 |
| 34 | P43 2 2 | 0.9599 | 0.4566 | 0.4007 | 0.4913 |
<< 3 | P1211 | 1.0851 | 0.3571 | 0.2944 | 0.3648 |
Step 3.

| >> 3 |P 1211 [ 1.0851 | 0.3571 | 0.2944 | 0.3648 [
| 1 | P 1 | 1.0876 | 0.3498 | 0.2927 | 0.3659 |
| 3 | P1211 | 1.1023 | -- | 0.2880 | 0.3699 |
| 26 | P2221 | 1.1112 | -- | 0.2905 | 0.3750 |
| 32 | P43 2 2 | 1.1119 | -- | 0.2921 | 0.3783 |
| << 32 | P4322 | 1.1119 | - | 0.2921 | 0.3783 |

Figure 4.4. Correction of the space group assignment for the crystatitre of GAF-domain of CodY.

This figure shows the summary file aZnuda The input structure Ref 10 was symmetrised and trans-
formed into the PSSG, Ref 35 (Step 1), refined in candidatgrsulps (Step 2) and transformed into the
correct space group, Ref 32 (Step 3). The input and outpu fyiven step are marked by-">" and

“< <" respectively. All shown subgroups have equivalent dasi except for the PSSG, which has the
parametec halved.

The three steps are explained#h 3.2ands4.3.3in more detail. Some of the subgroups are shown in the

subgroup-supergroup graph in Fig5@a). Step 3 is further explained in Fig.5b).
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Figure 4.5. Pseudosymmetry of CodY GAF-domain cryst#.Q).

(a) A fragment of the infinite subgroup-supergroup graph feyaksymmetriP4,22 with translation ba-
sis(a, b, c/2). Only those subgroups are shown, which have (i) transldtésis(a, b, c/2) (red frames)

or translation basiga, b, ¢) (blue frames) and (ii) 4 or 8 times more operations tRarwith the basis
(a,b,c). Subgroups in red boxes include pseudotranslatj@hand disagree with experimentally ob-
served reciprocal lattice. The basges b, c) and 8 times more operations occur in four subgroups (thick
blue frames) including the true subgroup (blue backgrou@rresponding four structures are shown
in Fig. 4.3 Arrows are directed from subgroups (4 times more opers}itmtheir supergroups (8 times
more operations). An equivalent subgrogg.4.9, if exists, is shown by subscript in brackets.

(b) Determination of the correct space group usftagnuda The top row represents the path in the graph
that the sequence of refinements in Step 3 in &igfollowed. Below this row, the branches are shown,
which were tested and rejected because of incorrect ttamslbasis or higher r.m.s.d. (the numbers
above the arrows) between the symmetrised structure amqmtatsirsor. Both figures were generated
using the verbose output frodanuda

172



The protocol for correction of the space group assignmedeéisonstrated using the crys-
tal structure of GAF-domain of CodY. The input model was thlsd-enantiomorph structure
(Fig. 4.3¢). The protocol included three steps (Figstand 4.5).

Several actions on the input model were performed at Step paiticular, the PSSG was
identified and the space group of the input model was assiffRefd10). In this particular case
the input model was not truncated as it contained identighlisits and no solvent. Manipu-
lations with the input model in a general case are discusséd.8.3 The R and Ry for the
input model (modified in a general case) were reported aseaerete, to be compared with the
final R-factors. The model was transformed by the operations flePISSG and the coordi-
nates of related atoms were averaged to generate a synadetizdel belonging to the PSSG
(Ref 35). The r.m.s.d. over®Catoms (these would be P-atoms for the DNA chains) between the
symmetrised and input models was reported. The X-ray date @ganded into point group 1.

Step 2 was a series of refinements in selected subgroups BS!RE. Two selection criteria
were applied. A subgroup was selected, if (i) it had the sawmesltational basis as the input
model and (ii) was not equivalent to a previously selectdmysaup relative to the actual point
group of the data. The first criterion ensured that the tediosial crystallographic symmetry of
the model agreed with the experimentally observed one, gge4-4 and4.5. (Therefore the
PSSG is the only subgroup shown in Figs4 that has a reduced cell.) The second selection
criterion was used to reject redundant subgroups (detaling4.4.4). In all refinements, the
starting models were generated by expansion of the synsadtrnodel into lower-symmetry
space group and therefore were internally identical. Thraydata expanded at Step 1 were re-
duced into the asymmetric unit of the corresponding poiotigiby averaging related intensities.
The protocol of twelve cycles of rigid body refinement agaBié resolution data and 24 cy-
cles of restrained refinement against all data had beenediafter tests with several structures
selected from the PDB.

The structure with the be&ee in Step 2 (Ref 3) was selected for Step 3. It was expanded
into P1, refined and symmetry elements were added one by one withra rof refinements
after each addition. The symmetry operation to be addedwasine of the operations unused
in the last refined structure. The selection criterion wasrttinimum r.m.s.d. over €atoms
between the refined structure and its copy transformed byested operation. The sequence
of refinements was terminated when no symmetry element ¢mubtided without reducing the
size of the unit cell. As an illustration, Step 3 for the CodAksdomain structure is presented
in Fig. 4.5(b) as a path in the subgroup-supergroup graph. The resulepf®tvas a sequence
of subgroups, each of them scored Ryte after rigid body and then restrained refinements. A
large jump inRyee Would indicate that selection of the next subgroup in theusage was not

justified and its precursor would be accepted as the likelg space group of the structure in
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qguestion. If no jump ifRqee Occurred (Fig4.4), the last subgroup in the sequence was accepted.
There were several structures in Step 2 givilige very similar to the best value (Ref 3).

However, this ambiguity is not a problem, as all these stinest belonged to subgroups of the

true space group (Ref 32) and any of them would have givendireat solution in Step 3. The

actual problem is to have at least one structure convergdeetaght minimum §4.3.4).

4.3.3 Preparation and transformations of the model

Step 1 in Fig4.4includes modification of input model and definition of the E5&ll its sub-
groups and transformations between the subgroups. In twdgearly define the asymmetric
units of the subgroups and transformations between thenmdtuel is truncated to a set of com-
pact and chemically identical subunits composed of one aermolypeptide or DNA chains.
These subunits are also treated as rigid groups in rigid befilyements. The PSSG is defined
to include all operations of the crystal space group and t8& Mperations satisfying the limit
of 3 A for the r.m.s.d. between the modified model and its pseudosstry-related copy. This
limit was chosen based on the expected radius of convergdn@gd body refinement. These
procedures are described below in more detail.

In particular, paragraphs (i) and (ii) below describe a nhodedification procedure which
allows handling of input models comprising identical clsawith different gaps, hetero-oligomers
composed of two or more different chains as in the twinnedigisgymmetric PDB entry 1upp,
as well as thesHELXLoutput, in which the chains are defined by gaps in residue etintp
not by chain identifiers. With minor modification, the debed algorithm is suitable for han-
dling ligands if present, but this option has not yet beenémented. Further development may
include merging subunits into oligomers to define biolotlycaensible asymmetric units in the
subgroups of the PSSG. Subsequent paragraphs explaimdetgon of (iii) the PSSG, (iv) its
subgroups and, for all of them, (v) the space group namesrandftrmations to the standard
settings. The last two paragraphs describe how the tranatmns between the subgroups are
(vi) stored and (vii) applied to a model belonging to a pattc subgroup.

(i) The solvent and hydrogen atoms are removed before thkdetjuence of residues con-
stituting the asymmetric unit is aligned with itself usinglaghtly modified version of the al-
gorithm by Needleman & Wunsch (1970). The large off-diadgorsdues in the score matrix
indicate matching fragments of the total sequence. Thégetpience is thus cut into segments
of several types, the segments of the same type having the sequence of residues. Atoms
missing in one segment are also removed from the other sagmktie same type. The atoms
belonging to the segments of a given type are counted. Thee#gype containing maximum

number of atoms is used as a reference type. If the numbepgofesgs belonging to any other
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type is not the same as in the reference type, then all segroétitis type are removed. At this
point, the numbers of segments in all the types are equalhegegments of the same type have
identical chemical composition.

(i) The segments are merged into subunits using a clugtexigorithm. The entities to
cluster are the types of identical segments. The reciprdisthnce between two types is the
number of identical interatomic contacts shorter thak Bade by all the pairs of correspond-
ing segments from the two types. (The correspondence betaggments is also found using
clustering algorithm.) There could be more than one digtdretween two types owing to the
contacts with symmetry related segments. The shortestndistand corresponding symmetry
operations are used when two types and their segments agedné&ther distances are recalcu-
lated to include contacts with both precursors of the nent jigipe. At the end of this procedure,
all segment types are merged into a single type or into sktygr@s with no conserved contacts
between them. In the latter case, the type including theeete type is preserved, the others are
removed. At this point the atomic model consists of chenyiddentical and spatially compact
subunits, which can be used to define asymmetric unit of tf&3&hd as rigid groups in rigid
body refinement.

(iif) The PSSG is defined as follows. The (approximate) iotetl lattice symmetry is ex-
amined using the procedure described3r2.1 The coset decomposition of the rotational point
group of the lattice relative to the point group of the cristgperformed. The representatives
of the cosets are tested to find out if they are rotational aorapts of the operations from the
PSSG. To check this, one copy of the structure is fixed anddbensl copy is rotated by the
representative operation and translated to best fit the &gpygl. If there remain subunits in the
fixed structure having no counterpart in the moved structoiréhe overall match between the
two structures is worse than the tolerance limit, the rotatiperation is rejected. If the opera-
tion passes the test, it becomes an element of the PSSG withatislation component defined
during the test. When all representatives are tested, tlod sperations is assembled containing
all operations of the input space group and the operati@atptmssed the test. This set of opera-
tions is expanded to a group using multiplication, thatfig, product of two operations already
belongs to the set, then it is ignored, else it is added togheTde resultant space group is the
PSSG.

(iv) The subgroup structure of the PSSG is represented asleidth rows representing
subgroups and columns representing elements of the PS®( @1d). An element expands a
subgroup to another subgroup. Accordingly, each tablecogltains the reference to a row. If
the cell refers to the row it belongs to, then the column regmés an element of the subgroup
represented by the row. The table is generated starting therfirst row representing subgroup

containing only the identity elemerf{ with original unit cell parameters). The element and the
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subgroup represented by the current cell are multipliedestpeinded. If the resultant subgroup
is not present in the table the new row is added. The referemtiee resultant subgroup is
stored in the current cell. The procedure is terminated nhe last row is reached and no new
rows are generated when it is scanned. The subgroups dogtaure translations and therefore
corresponding to a smaller unit cell are found and markedttude them from the series of
refinements in Step 2. Also, the classes of subgroups relatithe point group of the data are
found and only one from each class is tested by refinementjm St

(v) At this point each subgroup is defined by its operatiorsraquires identification. This is
done using a procedure which analyses the input group oétipes, calculates an identification
index and defines the transformation from the current toexreete setting. Both the index and
the reference setting depend only on the space group (natlemetified), to which the input
group of operations is equivalent. This procedure is adpiethe space group definitions in
the symmetry library to produce the indices for all the spgaups of interest (“biological”
space groups), as well as the transformation operabofiem the standard library settings to
the reference settings. The procedure is also applied teem gubgroup to produce its index
and transformatiotY to the reference setting. The subgroup inherits its namma fle library
space group with the same index and the transformation tetéimelard library setting is defined
asYIX.

Subgroup Space Shorter basis Reference to
reference group vector subgroup
number
5 P2, (a+c)/2 5 5 5 5
4 P2, - 4 5 5 4
3 P1 (a+c)/2 3 5 3 5
2 P2, - 2 2 5 5
1 P1 — 1 2 3 4
Classes of operations () Co Ca Ca

Table 4.3.Subgroup table for anti-TRAP crystal structure (Fdl).

The subgroup of true translations divides the operatiotk@PSSG into four classes;) translations
(ia+ jb + kc), (cz) screw two-fold rotations about the axegia@+ kc)/2, (c3) translationga + ¢)/2 +
(ia+ jb + kc) and €4) screw two-fold rotations about the axes(at+ ¢)/4 + (ia + kc)/2, wherei, j
andk are integer numbers. The union of a given class and a givagreup of the PSSG expands to a
subgroup of the PSSG referred to in the corresponding tadtlle ¢
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(vi) The subgroups names and transformations to the stdrsadting are stored in an aux-
iliary file and can be accessed through the subgroup refereamber. To simplify the trans-
formations between subgroups, the asymmetric units ohallsubgroups are also defined in
advance; the PSSG operations, one per subunit, transfptimrasymmetric unit d?1 into the
asymmetric unit of given subgroup are stored in the auyilfde. This approach also requires
that the subunits are stored in the coordinate files in aquéati order. In addition, the asymmet-
ric units of all subgroups are made reasonably compact araddd close to the origin to ensure
convenient representations in the graphical programs.

(vii) The routine that transforms the structures from onbgsaup to the other has two
modes. In the first mode it reads two numbers, the “from” sobgrnumber and the “to”
subgroup number, the coordinate file corresponding to tf@rif subgroup and the auxiliary
file. Using the transformations stored in the auxiliary fileXpands the asymmetric unit ind
and then transforms each subunit into the equivalent pasiti the asymmetric unit of the “to”
subgroup. Coordinates of all subunits at the same positierageraged and the total r.m.s.d.
is reported. New coordinates are saved. In the second meléio’ subgroup number is not
defined, so the routine tests operations from the PSSG, veremot present in the “from”
subgroup (actually it tests coset representatives), toditagiving the lowest r.m.s.d. between
the input and symmetrised structures. The “from” subgraug this operation define the “to”
subgroup. If the required operation does not exist, thenutpu file is created. The first and

the second modes are used in Step 2 and Step 3 idEigespectively.

4.3.4 Starting model and refinements

In the first version oZanuda the input model was symmetrised (Step 1 in Big) and refined in

a series of subgroups starting frdh, the next subgroup being generated from the previous one
by the best scoring symmetry element (Step 3 in &id). This protocol was replicated from the
protocol used for the manual correction of the CodY GAF-dimmsttucture ¢4.2.3. In the latter
case, starting from a symmetrised model was indeed negestherwise refinement did not
escape from the local minima associated with the input &tisesture, even refinement with the
correct space group and origin. On the other hand, the syris@@timodel could, in the general
case, be too far from the correct global minimum to reach #itier using refinement iR1.
This was observed in tests with the crystal structure of theaminase domain of glucosamine
6-phosphate synthase (Isupewal., 1996). It was known for this structure that in the original
model (PDB code 1gdo) the space group was incorrectly assigaP2; instead ofP2;212;,
and the symmetry assignment was later corrected (PDB cdfje Restoring the true symmetry

would be very easy were it not for Step 1, in which the model syaametrised. Because of
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pseudotranslation, which was present in this structueesgiace group to which the model was
transformed at Step 1€. the PSSG) was not the true space group but its supergroupwiith
smaller cell. Therefore, this transformation resultedigmiicant shifts of molecules from their
correct positions and refinementii was unable to return them back. Thus the symmetrisation
of the input model is an essential step in some instancesrbatditional obstacle in others.
This problem was solved by adding Step 2 (Fg) including refinements of the symmetrised
structure in several subgroups of the PSSG, so the inputtégr $ was not the symmetrised
structure, but the structure giving the bBgte in Step 2.

In addition, the table oR-factors generated in Step 2 may be useful in the cases afitvgn
interfering with pseudosymmetry, in which tiefactor difference between the true and false
structures can be marginal, especially if the input modehisviR solution which has not yet
been rebuilt. SoZanudagenerates the structure with currently most probable symymehile
this table may suggest returning to the symmetry validatigh the improved model.

Nevertheless, Step 2 is not a general solution for the pmoloiefalse local minima in rigid
body refinement. Perhaps the starting model should not katiohally symmetrised and the
ability of the MR to find a global minimum, although approximlg, should be utilised. So
the current protocol is likely to be replaced by one in whibk starting model is generated
by the MR inP1. Of course, the contrast of the TFR1 is small, but the advantage is that
no symmetry is assumed in advance. On the other hand, theepraimder consideration is to
correct the structure, not to solve it. Therefore, since @r@imate structure is known, the
peaks in both RF and TF can be selected in accordance witktthigure. In theory, the second
run of TF (one molecule fixed) provides all necessary infdiomeon the relative positions of all
the molecules. In practice, several molecules may need posigoned directly using the TF to

ensure clearer peaks for the remaining molecules.

4.3.5 Concluding remarks

In general Zanudais intended to close the gap between the intrinsic inacgusfthe MR and
the local character of the optimisation performed by refieemwhich therefore requires the
starting model with, at the least, correctly assigned sytryne

The program has already helped to validate several stegctuAn example of a difficult
case, in whictzanudadetermined the symmetry of a pseudosymmetric twin, is pitesein the

next section.
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4.4 Example of twin with double pseudosymmetry

The oxidoreductase fromfhermotoga maritimavas studied in the group of Professor Jennifer
Littlechild (University of Exeter). Diffraction crystalsf the holo-enzyme were obtained by
Simon Willies and the crystal structure was solved by Simaliaé& and Dr. Michail Isupov. |
corrected the space group assignment ugaguda(§4.3) and confirmed the new assignment
using the MR results if?1 space group.

The problem with symmetry assignment was caused by thenmesd# both pseudosymme-
try and twinning (Fig4.6). Moreover, the pseudosymmetry was generated by two opesatin
approximate fourfold rotation and a translationd. The pseudosymmetry had a very strong
effect on the intensities in the resolution range suitabteviinning tests, so the latter were hard
to interpret, but the comparison of refinements in alteveatpace groups usitanudaallowed
identification of the correct space group.

In addition, this example is used to demonstrate that thectsires with alternative origins
may represent alternative individual crystals of a twinisTleads to an additional criterion for

the selection of subgroups for test refinements.

4.4.1 Background

Oxidoreductase fronT. maritimawas co-crystallised with NAD+ to yield diffracting cryssal
belonging to the space grol2,2:2; with unit-cell parametera = b = 1417 A, c=1695A.
X-ray data were collected at Daresbury to 286esolution and initially processed in the space

groupP422. Because of the synchrotron failure, the data set hadngleteness of only 83%
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Figure 4.6. Twinning and pseudosymmetry in oxidoreductase crystale /& point in the RvR plot

(8§3.2) corresponds to the correleR;2;2; crystal structure and the X-ray data collected from the mvwth
crystal. Green points in the background are from Bigb).
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and intensities for indicds00, kO and 00 were not measured. It was however desirable to solve
the structure using this data set in order to find out whetienetwas substrate binding suitable
for structural studies and whether this crystal form wastwvpursuing for further experiments.

MR trials were performed usinglOLRER A single subunit of the previously solved apo-
structure was used as a search modléOLREPdetected a pseudo-translation veatg?; the
height of the corresponding peak in the Patterson map wasif.lation to the origin peak.
Therefore the TF search was conducted using two subunasedeby this vector§.1.19.
As the reflections along the crystal axes were not measullegight space groups with point
group symmetry 422 and primitive lattice were tested. Indfithem, MOLREPfound only
one pair of subunits because of packing constraititsl(9. The TF-scores in the remaining
two space groups as well &sfactors after rigid body refinements were similar, but ohthem
(P42:2, R = 33.2%, Riyee = 39.2%) was much better than the oth@&4§2,2, R = 39.0%,
Riree = 45.9%) in restrained refinemerREFMAQ.

Model correction and TLS-refinement B2;2 resulted inR = 29.9% andRyee = 34.3%.
These values were still too high suggesting that an incbagsignment of space group or origin

might have happened.

4.4.2 Twinning tests

In many cases the perfect twinning tests could be used tkahieether the data were processed
in a higher symmetry point group. In this particular casestla@dard analysis was not applicable
because of the pseudotranslation, which made the intestsitistics “less twinned” than the
reference statistics for the untwinned case (Big@).

The “sigmoidal” cumulative distribution df (the second derivative is positive at the origin)
is a more universal indicator of twinning, which usually w®reven in the presence of pseu-
dotranslation (Leest al, 2003) or correlated structure factofd 2.3 §3.1.6 Fig. 3.1a). The
cumulative distribution o in this example was “sigmoidal” for all data (Fig.7a) but not for
the data in the resolution range 815.3(Fig. 4.7c). Such behaviour could be attributed to the
effect of strong pseudosymmetry by rotation, which woulchpéetely disguise twinning at low
resolution. On the other hand, high valuesRs$tandard in high-resolution shells (Fig.7d)
suggested that the cumulative distributiorzdbr all data could also be misleading owing to the
experimental errors, compare with Fig3,

The minor evidence of twinning discussed here was insuffilsieconvincing to exclude
the originally assigned space groBg2,2 and, therefore, the comparison of refinements in all

possible space groups includiRg2;2 was necessary.
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Figure 4.7. Perfect twinning tests for the twinned crystal of oxidoretdise.

The resolution range used ig) (s outlined by green boxes i and ().
The colour legend ford) (b) and €) is the same as for similar plots in Figy.1

(a) Cumulative distributions of for all the data, resolution range 26.7-2/86
(b) Second moment at for acentric reflections against resolution.

(c) Cumulative distributions o in the resolution range 8.0-3/0

(d) Completeness an@standard against resolution.
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4.4.3 Correction of symmetry

The P42;2 model and data were submittedZanuda The summary of this run is shown in
Fig. 4.8 The three steps of the protocol and the data presented suthemary are explained in
84.3.2 It was found that the model had pseudosymmedg;2 (subgrousss). This symmetry
included the translatioo/2. The r.m.s.d. over Catoms between the input modé&;§) and
fully symmetrised modelSss) was 0.91A (Step 1). The series of refinements in Step 3 was
terminated with the subgrou§,7 belonging to the orthorhombic space gro@p;2:2;. This
subgroup had no supergroup with the large cell (Bi§) and, accordingly, no further attempts
were made to add symmetry elements.

The space group symmetry of the final mode2;2,2; (S7), and 422 symmetry of the
data implied perfect twinning by hemihedry. Accordinglgetversion ofREFMACallowing
refinement against twinned data was used in the final rouneboilding and refinement, which
resulted inR = 22.5% andRiee = 25.3%.

Unfortunately, no clear density for the substrate was foamdl this crystal form was aban-
doned. However, this example demonstrated #Hetudais capable of correcting the space

group assignment in the case of double pseudosymmetry andegvdata.

4.4.4 Additional criteria for selection of subgroups

Let Sy, be the pseudosymmetry space group of the structure (in trage under consideration
Snh = S35, Step 1 in Fig4.8). An elemento € S, corresponds to an (approximate) (screw)
rotation of the crystal. The action ofc S, on the datal can be defined as a permutation of the
elements in the data array corresponding to this rotatidre action ofo € S,, on the modem
can be defined as a transformation of atomic coordinates emmaytation of subunits (solvent is
excluded), so that the expressiom = mis satisfied either exactho(s a symmetry operation)
or approximately @ is a pseudosymmetry operation).

If two different subgroups are bound to produce internaligntical models, then only one
of them needs to be tested. The equivalence condition caorimeifated as follows. If the data

d are exactly invariant relative the operation
od=d, 0€ Sn, (114)
subgroups§ andS; are related by the,
oS0t =g, S C S, Sj C Sm, (115)
and the modem optimises the target function i§, then the modebm optimises the target

function in§;.
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Step 1.

| Subgroup | Spacegroup | R.m.s.d. | Refinement in tested group |
| | | from the | |

| Ref | | starting | Rigid | Restrained |
| | |  model, A | [ |

| | | | R | R | R-free |
I I I |- I I I
| >> 10 | P4 212 | 0.0000 | -- | 0.4094 | 0.4478 |
| << 35 | P4 21 2 | 0.9050 | -- | -- | -- |
Step 2.

| >> 35 | P4 212 | 0.9050 | -- | -- | -- [

| 1 | P 1 | 1.5852 | 0.3904 | 0.3098 | 0.3548 |
| 2 |C121 | 1.4912 | 0.3950 | 0.3261 | 0.3809 |
| 4 |P121 | 1.2780 | 0.4225 | 0.3805 | 0.4341 |
| 5 | C 222 | 1.3056 | 0.4309 | 0.3950 | 0.4461 |
| 6 | P1211 | 1.5915 | 0.3941 | 0.3111 | 0.3564 |
| 7 | P 4 | 1.3526 | 0.4262 | 0.3834 | 0.4339 |
| 9 | P21 21 2 | 1.3019 | 0.4468 | 0.4196 | 0.4699 |
| 10 | P4 212 | 1.3226 | 0.4320 | 0.3989 | 0.4490 |
| 11 |CcC121 | 1.5096 | 0.3966 | 0.3267 | 0.3758 |
| 12 | P1211 | 1.5926 | 0.3927 | 0.3095 | 0.3549 |
| 13 |CcC 2221 | 1.5053 | 0.3937 | 0.3286 | 0.3789 |
| 14 | P1211 | 1.5962 | 0.3936 | 0.3104 | 0.3534 |
| 15 | P21 21 21 | 1.5956 | 0.3960 | 0.3128 | 0.3572 |
| 16 | P 42 | 1.3780 | 0.4252 | 0.3932 | 0.4527 |
| 18 | P21 21 2 | 1.3709 | 0.4300 | 0.3872 | 0.4420 [
| 20 | P 42 21 2 | 1.4210 | 0.4253 | 0.3915 | 0.4615 |
| 31 |CcC 222 | 1.3909 | 0.4205 | 0.3850 | 0.4337 |
| 32 | P4 212 | 1.3917 | 0.4270 | 0.3920 | 0.4485 |
| 33 | P42 21 2 | 1.3823 | 0.4307 | 0.4061 | 0.4657 |
| << 14 | P1211 | 1.5962 | 0.3936 | 0.3104 | 0.3534 [
Step 3.

| > 14 | P1211 | 1.5962 | 0.3936 | 0.3104 | 0.3534 |
| 1 | P 1 | 1.5942 | 0.3810 | 0.3088 | 0.3521 |
| 14 | P1211 | 1.6137 | -- | 0.3045 | 0.3525 |
| 15 | P21 21 21 | 1.6195 | -- | 0.3047 | 0.3551 |
| << 15 | P21 21 21 | 1.6195 | -- | 0.3047 | 0.3551 |

Figure 4.8. Correction of the space group assignment for the crystattire of oxidoreductase.

This figure shows the summary file ddnuda The input structure Ref 10 was symmetrised and trans-
formed into the PSSG, Ref 35 (Step 1), refined in candidatgrsulps (Step 2) and transformed into the
correct space group, Ref 15 (Step 3). The input and outpu fjven step are marked by-*>" and
“<<” respectively. All shown subgroups have equivalent dasi except for the PSSG, which has the

parametec halved.

The three steps are explained#f 3.2andg4.3.3in more detail. Some of the subgroups are shown in the
subgroup/supergroup graph in FQ9.
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Equation (14) is satisfied in the following three cases, the operati@man element of the
true or false-origin space group or its rotational compongithe twin operation for perfectly
twinned data.

The equivalence condition can be checked as follows. Sémetius rotation of both data
and crystal do not change the value of the target functiorusThecause ofl(4), any model
m and its transformed copym give the same value for the target function. Becausel dB)(
anys € Sj can be represented d@s= oso !, wheres € S, and, thereforesom = omas
soon asm= m. This means that symmetry constraintsroin § are equivalent to symmetry
constraints ommin S;. Altogether, ifmis an allowed model i, thenomis an allowed model
in §; and the two models must give the same value of the targetifumct

The cas® < § is not interesting a§ = S; andom = m, that is, the two solutions coincide.

If o ¢ S, then there are two case§, = S; and§ # Sj. In the first case there are two
internally identical solutions ii$. In the second case, there is a single solutio§ jnvhich is

internally identical and is related lwyto a single solution irg;.

(1915 P212121( (1549 P212,2|

[1339 C222|(3035 C222|

Figure 4.9. Pseudosymmetry of the oxidoreductase crystal. A fragnfdirtfinite) subgroup-supergroup
graph for pseudosymmetf42;2 with translation basi¢a, b, c/2). Only those subgroups are shown,
which have (i) translation basig, b, c/2) (red frames) or translation baga, b, ¢) (blue frames) and (ii)

4 or 8 times more operations thRa with the basiga, b, c). Subgroups in red boxes include pseudotrans-
lationc/2 and disagree with experimentally observed reciprocét&atSubgroups with the badis, b, c)

and 4 times more operations (thick blue frames) imply twigrty hemihedry. Two true subgroups (cor-
responding to two different individual crystals of the tyvare highlighted by blue background. Arrows
are directed from subgroups (4 times more operations) to shipergroups (8 times more operations).
An equivalent subgrou4.4.9, if present, is shown in brackets. Figure was generatethugrbose
output fromZanuda
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Both non-trivial cases are present in the example underideraion. Leto be a fourfold
rotation aboutc. Equation {14) holds, as the data are processedP#P;2. Orthorhombic
subgroupsS;s etc. do not includeo. In other words, this, if considered as a point group

operation, is the twin operation for the orthorhombic solbgs. It can be shown that

0530 1=y 0S001=53 (C222,)
0550 1=S9 0590 '=S5 (P212:21)
0So0l=5 0§01 =5y; (C222)
0S50t =% 0S80 1 =Sig (P2,212)

(116)

Therefore, pairsS s, S3o (space group symmeti222,) and S;s, Sig (Space group symmetry
P212,2,) define internally identical structures which are diffaremlividual crystals of the twin,
whereas pairSs, S31 (space group symmet222) andSy, S;g (space group symmeti2,2,2)
define internally different structures although belongiomghe same space group. In the second
case the structures corresponding to different individugsétals belong to the same subgroup
and global optimisation would return one of the two struesuioy chance.

It makes sense to ignore the redundant subgroeygsdorresponding to the second individ-
ual crystal of a perfect twin by hemihedry) in order to avoihfusion with identical R-factors.
This will also save some computing time. Therefdenudaimplements the following selection
procedure based ol14), (115. The external loop runs ov&§ C S,. If the current§ has
not been previously flagged as redundant, the internal lonp overo € S, satisfying (14) to
find all S; # S satisfying (15) and to flag them as redundant. Because of this selection rule
Si3 andS;5 are tested in the second step in Fg8, whereasSp and S;g are ignored. On the
other hand, both subgroufs andS3; with space group symmet§222 and both subgrouf
and S;g with space group symmetiiy2:2:2 were tested: is5 () is true, thenSs; (Sig) is a
false-origin solution, anglice versa

Had the partial twinning been recognised and the data psedes 222, then1(14) would
not hold for fourfold rotatioro aboutc and all orthorhombic subgroups with the large cell would
be tested. This would make sense, as the individual crystatger size would give a lower R-

factor than another individual crystal.

4.4.5 Alternative methods of structure correction

The space group2,2,2; was confirmed using MR with the data expandediospace group.
Twelve subunits were positioned in a single rui®LREPand theP1-model was completed
using TF peaks, which had not been used in the partial modekére persistently appearing
at all twelve TF steps with high scores; the subunits cooeging to these peaks were placed

usingLSQKAB The correct symmetry was restored similarly to Step 3 in £i§
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In manual tests involving MR searches and refinements irralespace groups (an alterna-
tive to the MR inP1), additional refinements on the alternative origirc& would be needed
in P4,2,2,P42,2,C222 andP2,2,2 (but not inC222; andP2,2,2,, in which the structure with
the alternative origin is the structure of the second irttlial crystal of the twin).

If the reflectionsh00, kO and 00 had been accurately measured, the assumption of twinning
by hemihedry and the systematic absences would necespaiily to P2:2,2, space group.
Tests of alternative origins would not be needed and stifaigtard MR would produce the
correct solution. In this case, the comparison of refinerreRR2,2,2; with two refinements in
P4,2,2 (two non-equivalent origins) would confirm or reject thgbthesis of twinning. On the
other hand, the automatic comparison of all possible sulpgr@ives more confidence in the
final result.

Comparison of refinements in several subgroups is partiguiaportant if there are no
systematic absences along two or all three axes. For exafmpiean deoxycytidine kinase
formsP2,2;2 twinned crystals, in which the axis of four-fold twin optoa is alonga and maps

systematic absences onto non-zero intensities (EligaBathini, personal communication).
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4.5 OD-structures with enantiomorphic sequences of stackg vectors

In all three examples of this chapter, the higher spacemsymmetry of the crystal was per-
turbed by overall, although small, displacements andimotaiof biomolecules. As aresult, there
were appreciable differences in R-factors between theangefalse structures after refinement,
which made it possible to resolve the space group unceytaint

This section presents another kind of space-group unogrted macromolecular crystals,
which is similar to the uncertainty with the choice of enantorph in crystallography of small
molecules and which cannot be resolved using X-ray data ofdltheoretical model and an

example from the PDB are discussed.

45.1 Theoretical model

Let p be a vector of structure factors representing the substeichown in Fig4.1Q0@), € be
the identity matrix ana be a matrix representing the three-fold rotation abougt the generator
of the space group3 of p,

op = p, (217)

63

=& (118)
The matrixo'is an orthogonal matrix of permutations with elements etalither 0 or 1.

3. —TI

i—r3

@) (b) (©

Figure 4.10. Acentric structures with equal structure amplitudes. Tinectures are assembled from

identical layers, which are parallel to (001) plane) Partial P3 structure containing every third layer.
(b) TheP3; structure. €) The P3; structure. Ink) and €), only one trimer per layer is shown.
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Letf andri be complex diagonal matrices representing translaticasc/3 andr; (ri;1 =

orj), respectively,

B_a (119)
of = £6, (120)
6fi = Fi110. (121)

Notations (17) to (121) are used to analyse the structures in Fg3Qb) and4.10c). In
particular, it is shown below that the two structures (i) dnélve same structure amplitudes, (i)
belong to different space groups but (iii) belong to the s#&biefamily, so if one structure
physically exists, another is also possible.

(i) The matrix

V= fl + ffz + f2f3 (122)

represents the positions of trimers in FigslQb). The set of trimers in Figs4.1Qb) can
be mapped into the set of trimers in Fi§10c) in such a manner that the reference points
of corresponding trimers would be related by inversion. réfage, the positions of trimers in
Fig.4.1Qc) are represented by and the two structures are represented by the followingvect
of the structure factors,

f1 =vp, (123)

fo =V p. (124)

Let W be a real diagonal matrix of weighting coefficients. Becaiise also diagonal, the

weighted sums of intensities for the two structures coiecid
fiTWfy, = pT0*Wip = p TOWv*p = f5TWi,. (125)

In particular, ifw contains a single non-zero element, the equati@#b)(means the two cor-
responding intensities are equal. Therefore, the stresfurandf, produce exactly the same
structure amplitudes.

Note that the absence of anomalous signalivas not assumed. Thus, in contrast to the true
enantiomorphic structures, the structures with enantipirio sequences of stacking vectors can
not be distinguished using anomalous signal.

(if) Using equations117) to (124), the vectord; andf; are expressed as follows,

fi =37 f1p, (126)
fo = 37 F p, (127)

where
37 = e+ {6+ (f6)2 (128)
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Equations 123, (124) and (26), (127) represent two equivalent ways of assembling the struc-
turesf; andf, from layers. In 23) and (L24) the two structures are assembled from translated
copies of the reference layer, while ih26) and (L27) the complete structures are generated
from the reference layer by screw rotations. If the layeid slanmetryP11(1), the first proce-
dure would result into twé1 structures with the same structure amplitudes and thendemte
would produceP3; andP3; structures with different structure amplitudes. Note hesvehat
none of the last four structures is OD becauseRb&1) layers can only occur in the type IlI
(Fig. 1.5d), in which any two contacting layers are related via a scieo+fiold axis parallel to
the layers.

The symmetry of, andf, can formally be identified as follow. Because &i.8), (119 and
(120), the matrixr is a projector,

T =T, (129)

which commutes with own complex conjugate,

=R (130)

~

Because of 30), 77 is a real matrix, whereas itself is not. ¢ can be reduced to block
diagonal form with five types of block. The blocks correspagdo reflections with # 3n and
eitherh # 0 ork # 0 contain complex elements, as the elementsfof these reflections are
complex numbers.) Therefore,

e (131)

Thus, ((26) and (L27) for a generic vector{p result in
afi="M1 7fL # (132)

and
7ty =15 AVERP) (133)

If a vector of structure factors is invariant relativestptfien it is invariant relative to any matrix
from the groupG; = {e,6,%6} andvice versa Similarly, invariance relative ta*"means
invariance relative t&; = {e, £*6,*26°}. The matrix group$; andG, represent space groups
P3; andP3,, respectively.

Altogether, given a generic vectog, the structure$; andf, are different and belong to
different space groups although both are composed of @rfyers and produce the same
structure amplitudes.

(iii) In both structured; andf, the consecutive pairs of adjacent layers are related bg thre

alternating stacking vectors,

S=ri—ri_1+t, =9 (134)
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Because of120) and (121), these vectors are equivalent relative to the symnfetgy11 of the
layer and therefore the two structures are OD-structge8)(from the same OD-family of type
II/A, with maximum degree of order but with enantiomorphérjaences of the stacking vectors,
(..,81,%, S, ...)infrand(..., s3, S, S1, ...) infa.

Intermolecular contacts in two ideal OD-structures aretidal and therefore both structures
could in principle exist either in two separate single aisbr simultaneously in allotwin. The
intensities from individual crystals of such allotwin wddde equal. If, in addition, the individual
crystals were large and therefore the interference terne wegligible, the intensity statistics
would not deviate from untwinned statistics.

Two special cases are possible, in which the structéyeend f, are identical. Ifs; =
ma-+nb, then both structures belongR8 space group witt/ = t. If 53 = +(a—b)/3+ma+nb,
then both structures belong R8 space group witlt’ = c in hexagonal obverse or reverse

settings.

4.5.2 Example

The 2.6A crystal structure of proliferating cell nuclear antigetONA; PDB code laxc; Gulbis
et al, 1996) belongs to the space gro@@,21 with unit-cell parametera = 835 A, ¢ = 2339

A. The structure possessiB32 pseudosymmetry (Cr.m.s.d. from the symmetrised structure is
0.83,&) and therefore it was selected as a test cas&@émuda Surprisingly, the refinement in
two different space groupB3,21 (symmetry of the PDB model) aiB,21 gave very similaR-
factors. The pseudosymmetry could not be a reason for thisesgroup uncertainty. Therefore
further analysis has been performed. A comparison of theaf@wnative structures with the
symmetrisedR32-structure showed that these were OD-structures froraahee OD-family of
type I/A with P(3)21 symmetry of the OD-layers. Compared to the theoreticadehabove,
the symmetries of both the single layer and the completetstrelinclude additional operations,
two-fold rotations. Therefore, the orthogonal projectafrstacking vector on the plan®01)

is necessarily orthogonal to one of the two-fold axes. Ex&mpthis constraint, the theoretical
model remains valid and explains the space group unceytainthe crystal structure under
consideration.

Validation of the space group assignment was performedlsvid The solvent was re-
moved and the protein trimer constituting the asymmetriit ohthe PDB model was sym-
metrised to generate a structure in which the OD-layers wraetly symmetric relative to the
plane space group(3)21. This model was refined iR3,21 space group. The symmetrised

trimer was shifted by #053a+ b) to generate the starting model for refinement in space group
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P3:21. The results of the two refinements are presented in Batl&’ he symmetrised starting
models were assumed not to be biased toward the originat sgaapP3,21. Nevertheless, the
R-factors in this space group were lower and the differenceewiet negligible, especially the
difference inRyee. Refinement iP3,21 persistently produced low&-factors even when the
starting model was generated from the structure refinéBi21.

Nevertheless, the results of refinements could not be irgtg unambiguously. One possi-
bility was that the crystal was indeed a sin§l&,21 crystal, in which small asymmetric defor-
mations in a given layer induced by contacts with one neighhg layer defined the position of
another neighbour. However, the asymmetry of the OD-layas very small (€ r.m.s.d. from
the symmetrised layer was only O.Lé;land was not associated with overall shifts or rotations
of the subunits. It seemed therefore also possible thatrifstat was a polysynthetic allotwin
or partially disordered crystal with tHe3,21 fraction predominating. The latter hypothesis was
consistent with the large difference betwdRandRqee, poor electron density at the interfaces
between adjacent OD-layers and large structure amplitieds®me of the axial reflections with
h = k = 0 andl # 3n, which had to be extinct in botR3,21 andP3;21. All these could be
signs of partial disorder and could be due to the small sitzeslividual crystals in the putative

allotwin.

4.5.3 Concluding remarks

The space group uncertainty discussed in this section ie general for OD-structures. If the
plane space group of the OD-layer contains symmetry elenwdrtrder 3, 4 or 6, then the OD-
family contains the members with inverted sequences okistgosectors. The OD-structures

with the opposite order of stacking vectors belong to différspace groups, but, similarly to the

Space group P3,21 P3;21
R (%) 22.094 22.345
Riree (%0) 29.148 30.016
R.m.s.d. from ideal values

bond lengthsA) 0.016 0.016
bond angles?) 1.70 1.65

Table 4.4.Refinements of OD-structures with enantiomorphic setsamkéhg vectors. Two models of the
PCNA crystal with symmetrised OD-layers and opposite oadestacking vectors were generated from
the PDB entry laxc. The models belonged to different spacepg;P3,21 andP3;21, but produced
equal structure amplitudes. Refinements of these models pexformed to identify better symmetry

assignment.
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structures with inverted atomic coordinates, produce #meesstructure amplitudes. Moreover,
the OD-family contains allotwins and partially disorderstductures, in which domains with
opposite sequences of stacking vectors coexist.

In all these cases, the X-ray data and especially macromialeX-ray data of limited reso-
lution are insufficient for an unambiguous characterisatibthe actual crystal structure. Never-
theless, a simple approach, in which the macromoleculatalris considered as a single crystal
belonging to the space group producing beRefactor, is sufficient for model building and
structure analysis. Locally, the electron density mapsiatetmolecular contacts are almost
identical in the alternative space groups and therefoodveilhs and partially disordered struc-
tures would be handled with reasonable accuracy. Simutenesfinement of two individual
crystals for better treatment of allotwin is unlikely to besgible because of too many correlated
parameters. However, it seems feasible to account for teefénence between domains of a
partially disordered structure.
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5 Conclusions

NCS is a feature of macromolecular structures, which, iéeng, typically raises extra problems
with the structure solution. For example, the presence d& Maplies the use of multi-body MR
complicated by low signal-to-noise ratio. In special casksanslational pseudosymmetry or
twinning interfering with NCS, the space group assignmant lee a problem. Accordingly, the
two particular issues raised in this work are the use of NGiflegl MR for structure solution

and the validation of symmetry assignment.

5.1 Non-standard MR protocols

Several examples of structures that could not have beeadsabutinely using MR are presented

in this thesis. The methods that have facilitated the sirectolutions are summarised below.

5.1.1 NCS-constrained exhaustive search

Three methods that can be generally classified as NCS-aoredrexhaustive searches are pre-
sented in this thesis. They differ in whether all availab@3Nconstraints are used for structure
solution or only some of them. These methods are applicalieystal structures of oligomeric
proteins, oligomers possessing hierarchical structudébaimg “oligomers of oligomers”. Three
relevant examples are presented in which smaller oligomere known from homologous
structures, but larger oligomers were either unknown oy dfferent from those formed by

homologues,
() Thioredoxin peroxidase B from human erythrocytg2.{, PDB code 1gmv),
(i) Anti-TRAP protein fromBacillus licheniformig52.2),

(iii) Hydroxycinnamoyl-CoA hydratase-lyase frofseudomonas fluoresce(32.3, PDB code
2j5i).

In the method used for solving (ii), only one of two unknowngraeters was scanned and

another was found by subsequent TF searches. Thereforaehtiod is

faster;

applicable to oligomers with only one symmetry axis and &dfore more general;

is easier for manual use and for general implementatiorheasg¢arch models for the TF

do not need to be generated explicitly.

delivers an additional validation criterion, the integritf the larger oligomer.
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Therefore this method is recommended as the next optiory tafter the standard one-by-one
search and is worthy of implementing in MR pipelines.

The other two methods are useful in specific circumstancesthddl (i) uses all NCS con-
straints and provides the highest possible contrast in heehrch, so it was used for the struc-
ture determination of a large non-spherical oligomer wélatively low sequence identity to the
search model. Method (iii) was used in the presence of mtioehl NCS to avoid the effect of

long cross-vectors on the TF search.

5.1.2 Substructure solution using NCS-constrained exhatige search

Another variation of the general method was used in the eoafsstructure solution of the
tridecameric portal protein from phage SPR2.6, PDB code 2jes). Here the substructure of
thirteen Hg atoms was not found using direct methods but wasd using NCS-constrained
exhaustive search against isomorphous differences. Xhim@e shows that the MR method,
which is usually less efficient for substructure solutioartidirect methods, can nevertheless
be the best choice if information on NCS is available and theles substructure is therefore

defined by a small number of variable parameters.

5.1.3 Refinement of partial structures

Refinement of a partial structure was a critical step of theddRtion of
(i) E1-helicase from bovine papillomavirus-§2(4, PDB code 2v9p) and
(i) Hypothetical protein MTH685 fronM. thermautotrophicug2.5).

Two different approaches were used: (i) NCS-constrainédement of four internal parame-
ters of a hexamer, the maximum value of the CRF being thettéwgetion and (ii) restrained
refinements of partial structures and the use of refined dmras search models in subsequent
rounds of MR.

The idea of methaod (i) is to increase the radius of convemgdryareducing both spatial and
angular resolution. An implementation of this method foreagral oligomeric or multidomain
model may use the spherical harmonic representation ofdteeathd model generated at the RF
step of the MR to refine a composition model before the TF step.

Method (i) requires the presence of two or more identicalenigles in the asymmetric unit,
but does not require a point group symmetry relation betwieem. Restrained refinement used
in this method allows utilisation of high resolution datéhieh otherwise are useless for MR.
It was found that the completeness of a partial model of aBout is sufficient for its efficient

refinement and for substantial improvement of the searchetaatérived from it.
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5.2 Symmetry validation and correction

Several issues concerning crystal symmetry and twinniaglecussed in this thesis and sum-
marised below. These include the effect of twinning on tlerét model, the interference of
twinning with NCS and pseudosymmetry, data processing ahdinning in the case of twin-

ning by reticular merohedry and a program for symmetry \aith and correction.

5.2.1 Twinning by (pseudo)merohedry

In this type of twin, all reflections from one individual ctgsoverlap with the reflection from
any other individual crystal. This is the most frequentabteast, most frequently reported case
of twinning in macromolecular crystals. An analysis of tHeBPwas performed using R-factors
between twin related intensities, observed and calculdatedenerate a comprehensive collec-
tion of such twins. The examples found were used for testirigred refinement implemented
in the new version oREFMAC(Garib Murshudov, personal communication).

An atomic model represents only one individual crystal angphases can be ascribed to
a contribution from other individuals into the observeceimgities. The atomic model cannot
be significantly affected by the latter contribution as tenement program will treat it as
noise provided reasonably strong stereochemical retgratowever, the analysis of the PDB
revealed several models refined against twinned data, wiéhk significantly corrupted. It
seemed likely that in these cases an unnoticed twinningambighR-factors may have lead to
an incorrect assessment of model quality and resulted thefurefinement, likely with weaker
restraints, involving overfitting of the models towards thenned data. One such model was
rebuilt and refined to show that untwinned refinement as sadnat be responsible for any
significant changes in the model or electron density map.ak therefore concluded that the
main role of twinned refinement is to produce more usual loWes of R-factors and thus
exclude overfitting, and that the main problem associatdld tminning is an awareness of its
presence.

The analysis of the PDB showed that in about a half of all tvifrestwin axis was approx-
imately parallel to an NCS axis. In such circumstances thecstre factors related by twin
operation correlate and therefore the contrast of twintésgs decreases. The high occurrence
of this special case of twinning and additional complicagidhat it causes simulated a theo-
retical analysis resulting in a simple analytical expresdior the distributions oZ andH for
variable twinning fraction and correlation. These disttibns can be used as references in the
perfect and partial twinning tests, respectively, in thespnce of correlation.

In addition, three examples with different correlation wirt-related structure factors were

analysed in detail:

195



() a twin with NCS but without correlation (C-terminal domaof large terminase subunit
from phage SPP%3.3);

(i) an OD-twin with a significant correlation, in which thgrametry of OD-layers induced
both twinning and NCS (Ferrochelatase-1 frBarwcillus anthracis§3.4, PDB code 2c8));

(i) atwin with a very strong correlation caused by intediece of twinning and pseudosym-

metry (Oxidoreductase frofhermotoga maritimag4.4).

The presence of twinning caused no problems with the spamggassignment in (i). The

twinning tests had not been performed until refinement jregithe MR gave a solution with a
great contrast in one of the higher symmetry space groupaddition, this space group could
not be rejected with certainty because of pseudo-absendesdd by the symmetry of OD-

layers. The twinning tests were not conclusive in (iii) ahd lower symmetry space group and
twinning could only be confirmed using refinements in a savfesgpace groups consistent with
the cell parameters.

Case (iii) highlights a problem of distinguishing pseudusyetry interfering with twinning
in a lower symmetry space group from a higher symmetry. Tlayars of the PDB showed
that the lower symmetry space group was incorrectly asdigmenany cases and that some of
these models were significantly corrupted because of reéngiwith some of the symmetry
constraints being in effect ignored. It was therefore cotetl that a specialised program is
needed that could validate or correct symmetry assignmeiriglor after refinement and model
building.

5.2.2 Twinning by reticular pseudomerohedry

This type of twinning is characterised by overlap of only acfron of all the reflections. It
is either very rare in macromolecular crystals or usuallpai unnoticed, as it creates less
problems with symmetry assignment, structure solution rafidement compared to twinning

by (pseudo)merohedry. Two cases were discussed in thisthes

(i) the twinned crystal of lipase B fror@andida antarctica§1.3.4 §3.2.5 PDB code 1Ibs)

with a very small obliquity angle and a low twin index of three

(ii) the twinned crystal of_-2-haloacid dehalogenase froBulfolobus tokodai{(§3.5, PDB
code 2w11) with a small but appreciable obliquity angle atat@e twin index of ten.

The two cases differ in how the diffraction data were proedssnd in potential mistakes that

could have been made.
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The twinned data (i) with low obliquity angle and twin indexke indexed and processed
in the large unit cell (of the twin lattice) and therefore twing could have been mistaken for
pseudotranslation. The integrated data were reindexedntove non-overlapping reflections
from the smaller individual crystal and to detwin overlagpreflections.

The autoindexing of the data (ii) with larger obliquity aegnd twin index resulted in the
correct cell dimension so the twinning could have remainaabticed. As the spots from one
of the individual crystals were not integrated, the dataemiion only involved the detwinning
of overlapping reflections, which, however, was more sdfaited in this case because of equal
sizes of individual crystals and significant obliquity amgl

The raw data were available in example (ii) and thereforeefimements of the complete
final model were compared, against twinned and detwinned. diib significant differences
between the two resultant models were found although tHerdifce between R-factors was
about 5%. However, the difference map from an incomplete ehes more distorted for
twinned than for detwinned data. This difference can be ofesonportance for model building,
which, as in the case of twinning by (pseudo)merohedry,cctadd to a misinterpretation of a
weak density and a corrupted model if twinning were ignofElais may be especially relevant
to poorly ordered segments with low electron density.

An additional problem associated with cases like (i) is tstidguish between twinning
and pseudotranslation. From the general point of view, ithegain a problem of identifica-
tion of the correct symmetry, but a possible mistake is aigas®ent of incorrect translational
symmetry (i.e. unit cell parameters), not the point groumsetry as it was for twinning by
(pseudo)merohedry.

The two twins by reticular pseudomerohedry presented mittigsis are OD-twins, as are
the twins encountered by lan Tickle and Gleb Bourenkov @ueakcommunications). Both
twining and NCS in all these structures are due to the synynwét©OD-layers and, therefore,
twin-related structure factors of overlapped reflectidnsrgly correlate and detwinning can be

replaced by demodulatior33.5).

5.2.3 False origin solutions

A new class of false solutions, which can occur in the presefipseudotranslation, is charac-
terised in this thesis. In some crystals, there exist etprivarigins in a pseudosymmetry space
group (PSSG) with a smaller unit cell, which are not equivela the true space group with a
larger unit cell. Assignment of a false origin during MR sture solution leads to a false model

which differ from the true model by

¢ a large overall shift of the while crystal structure relatio fixed crystallographic axes
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e small translations, rotations and distortion of individo®lecules to accommodate new

symmetry constraints.

The large overall shift of the whole structure does not affee structure amplitudes but it
cannot be corrected by local optimisation, rigid body otregsed refinements. Small differ-
ences between the true and false structures owing to chaygechetry constraints introduce
significant errors even in the relative coordinates of atomeny particular molecule, corrupt
some fragments of electron density and increase R-factors.

Three examples of false origin MR solutions are presentetii;nthesis, which were en-
countered in the actual courses of structure determinalibis are the structures of Anti-TRAP
protein fromBacillus licheniformig§4.1), GAF (N-terminal) domain of apo CodY protein from
Bacillus subtilis(54.2, PDB code 2gx5) and Oxidoreductase fréimermotoga maritim#s4.4).

Three approaches to the origin correction are discussed,
(i) MR with oligomeric models,
(i) Refinements in alternative origins,
(i) Refinement inP1 followed by restoring the correct space group.

It was found that approach (i) can be misleading. Approatafipeared to have a larger
radius of convergence than (iii). However, approach (@ilriore general as it in effect tests all
relevant subgroups of the PSSG and can in principle handtefalse origin solutions and cases
of twinning interfering with pseudosymmetry mistaken faghrer crystallographic symmetry.

The analysis of twinning interfering with pseudosymmetnyl &alse origin solutions simu-

lated development atanuda a specialised program for symmetry validation and coiwact

5.2.4 Program for symmetry validation and correction

Three cases are outlined above, in which an incorrect symrassignment is hard or impossible

to correct using the experimental data only. These are
e erroneous higher symmetry assigned to a pseudosymmeinic tw

e erroneous lower symmetry and twinning, whereas the higymamsetry space group is a

correct assignment,
e assignment of a false origin.

All these errors can in principle be corrected by refinemar®1 followed by the deter-

mination of the space group symmetry of the refined model.aBse of possible bias of the
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input model toward incorrect space group and because ofqguowergence of refinement Ri

a more sophisticated protocol was implemented, which degu
e merging the model into the PSSG,
e refinements in subgroups of the PSSG,
e expanding the structure with the lowéfee into P1,

e restoring higher symmetry by adding symmetry elements &iseanother and refinement
after each addition.

In future development afanudathe following issues need to be addressed,
e Better refinement protocol with larger radius of convergenc
e Better tharRye criterion for comparing the space groups,

e NCS-guided detection of twinning by reticular merohedrgtaken for pseudotranslation.

5.3 Outline on symmetry assignment

Very generally, the problem of symmetry assignment can Wielei into crystallographic and
statistical parts. The first include an accumulation of kieolge on the possible organisation
of crystalline matter and the use of this knowledge for ctimrgsation of particular structures.
Point and space group symmetry of a single crystal are onipal @nd indeed simplest part
of the whole subject. Even for protein crystallography, ihiet the crystal is only a tool for
determination of protein structure, a more detailed kndg#eof the organisation of crystal twins
and partially disordered structures may be important fiisation of experimental diffraction
data. This thesis concerned only this aspect of the subjecpeovides several examples either
interesting from structural point of view or difficult forterpretation, and describes the program
Zanudafor symmetry validation.

However the statistical part of the subject is no less ingart For example, a simple cri-
terion of smalleRyee does not work for comparison of refinements in different spgroups,
and amad hoctolerance limit for differences between tRgee Values is used idanudafor this
purpose. This approach needs to be replaced by proper egwtiesting. This could be, for
example, a likelihood test, or the linear model analysishef quadratic approximation to the
likelihood function. Further development of the symmetajidation program may require the
use of unmerged intensities, as the radiation damage tstatrgay be a reason for its apparent
lower symmetry. Advanced statistical methods will be abedy necessary for approaching this

problem.
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5.4 Impact on structure refinement and the resulting model

This thesis is dedicated to rather unusual crystal strastand methods for their solution. How-
ever some useful experience on structure refinement emdrged) these analyses.

It was noticed that the complete atomic model well and pigpefined against twinned
data does not suffer in a major way if subjected to untwinredthement, nor indeed does the
electron density corresponding to this model. However]emsitrue for the major features of
the structure, those for which the density is weak may bebdéfined after twinned refinement.
Accordingly, there are two valid ways to build a model usiwinhed data: (i) to use untwinned
refinement in the beginning of the model building and switctwtinned refinement for the final
model correction or (ii) to use twinned refinement from theneeginning. Either approach has
disadvantages although both, if refinements are done digrafill result in correct models with
the differences in their atomic parameters within expenitaleuncertainties. The things to care
about are strong restraints, validation of main- and shtsErctorsion angles and avoiding any
over-interpretation of the densitg,g. postponing the building of alternative conformations and
poorly ordered loops and solvent molecules till the very tasment.

These common practices are especially important for (Jveeak restraints and hasty mod-
elling combined with untwinned refinement against twinnedadcan lead to a substantially
corrupted model, which would not be possible to revert todbeect one by any refinement
without rebuilding. The model building follows path (i) vtnning is unnoticed, and this pos-
sibility means that the above rules need always to be obeyatth (ii) can cause troubles if an
untwinned structure belonging to a higher symmetry spagemhas been mistaken for twinned
structure and is refined in lower symmetry as if it were a pesychmetric twin. In this case
the corruption of the model is revealed in large differerfeetsveen molecules which are in fact
related by crystallographic symmetry. Here, NCS restsatai be a possible precaution. How-
ever it is always better to handle the model in the correatesgaoup, to carry out the twinning
test at an early stage, and to validate the model symmety sdime rebuilding if there were
any uncertainties with the symmetry assignment or twinietgction.

All above relates only to refinement in the correct space grauany of its subgroups,
whether or not the data are twinned. The major errors in syimyragsignment, such as assign-
ment of supergroup or false origin, would inevitably leadsignificant coordinate errors and
corrupted electron density, in at least some of its regi@wth unnoticed twinning and major
errors in symmetry assignment are monitored=hy., So a large value with no clear hints in the
density for further steps of model correction may well irdéca need for symmetry validation.

For real confidence in obtaining the best set of coordinatesyistals which are twinned,

procedures such as those described in this thesis provédel ussights.
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