Experimental Phasing with CCP4

- Speaker: Charles Ballard
- Program Authors:
 - Raj Pannu, Pavol Skubak
 - Randy Read, Airlie McCoy
 - Rudolf de Graaff, Jan Abrahams
 - Kevin Cowtan
 - Garib Murshudov
 - Phil Evans
 - (George Sheldrick)
- “Every program is becoming an experimental phasing program” - Kevin Cowtan
Data and Resolution

- Spacegroup
 - Translation symmetry
 - Fixed origin
 - No special positions
 - P21 21 21 ideal
- Redundancy
- Scala
 - Completeness
 - $\langle I \rangle / \langle \sigma I \rangle$
 - Inter dataset anomalous correlation – MAD (> 0.3)
 - Intra dataset anomalous correction - SAD
Data and Resolution II

- $<\text{Dano}>/\text{<sigDano>}$
 - >1.2
 - Output by AFRO
 - Also SHELXC via crank.
- George Sheldrick's rule of thumb
 - Hi Res + 0.5
 - 3.0 A
Running CRANK
http://www.bfsc.leidenuniv.nl/software/crank/

- Takes Merged data
- Experiment type
- Atom types plus f' and f''
- Customize pipeline
- Heart of CRANK
 - AFRO
 - CRUNCH2
 - BP3
Flow inside CRANK

GCX

AFRO, SHELXC

CRUNCH2, SHELXD

BP3, SHELXE

SOLOMON, PARROT, PIRATE, RESOLVE

ARP/wARP+REFMAC, BUCCANEER+REFMAC RESOLVE

F_A estimation

Substructure detection

Phasing

Density Modification

Model Building
AFRO: Multivariate SAD equation for F_A estimation

- $E(|F_A;|F^+|,|F^-|) = \frac{\iiint|F_A|P(|F_A|,\alpha_A,|F^+|,\alpha^+,|F^-|,\alpha^-)d|F_A|d\alpha_Ad\alpha^+d\alpha^-}{\iiint P(|F_A|,\alpha_A,|F^+|,\alpha^+,|F^-|,\alpha^-)d|F_A|d\alpha_Ad\alpha^+d\alpha^-}$

- Direct methods very sensitive to FA values

- The multivariate FA estimation leads to more substructures being determined than $\Delta F = ||F^+| - |F^-||$
Crunch2: substructure detection

- Algebraic approach based on rank reduction of Karle/Hauptman matrices
- Includes higher order collections of reflections, not just triplets
- Standalone via crank interface
Scoring the substructure solution

- **CRUNCH2**: $\text{FOM} > 1.0$
- **SHELXD**: $\text{CC}_{\text{weak}} > 30\%$
- Both conservative criteria. Solutions may be missed

- **BP3** can be run in “PHAS” mode to verify
BP3: substructure refinement

- Multivariate substructure refinement
 - Includes effect of model and measurement errors
- SAD, MAD, SIR(AS) and MIR(AS)
- Refines atomic and error parameters
- Outputs H-L coeffs, FOM and PHIB
- Normal and fast phasing (PHAS)
Solution validation

- FOM
- SAD - Anomalous Luzatti Parameter
 - > 0.7 strong solution
 - 0.3 unlikely
- Build
Density Modification

- Map improvement
 - SOLOMON, (SHELXE)
 - PIRATE – statistical in reciprocal space
 - PARROT – MLHL target function, pairwise NCS
- SAD Hand selection
 - SOLOMON/SHELXE:
 - contract local map density
 - higher better
 - PARROT:
 - sigmaa value – higher better
 (DM: Real Space Free R, lower better)
- Tolerences about 0.05
Refinement - Refmac

- Relevant refinement targets
 - SAD (and SIRAS coming)
 - Greatly improves maps
 - MLHL
 - Prior phase information used indirectly in the form of H-L coefficients
 - Assume prior phase information is independent of refined phases
 - Generally applicable
Model Building - Buccaneer

- Statistical model building. Likelihood function based on conserved density
 - Requires phase probabilities
- **Finding Growing**: Cα environment
- **Sequencing**: Cβ environment

![Chemical structures of ALA, CYS, HIS, MET, THR]
GerE SAD – a challenging example solved by default

- Example data with CCP4. Originally MAD+native
- 2.7Å SAD peak data with 12 Se (F`-3.6, F” 6.0)
- Early Crank version failed
- Crank v1.3 builds 70% by default
- Crank v1.4 builds 93%, and 70% at inflection point.
Phaser

- Multivariate SAD target
- Refines coordinates, temperature, occupancy
- Iterative atom location
 - Improves substructure and sensitivity
- Maps
 - Electron density
 - Log likelihood gradient (by atom type)
Phaser – log likelihood gradient

- Peak height dependent on f'/f'' ratio
 - May distinguish atom types
 - Can be fooled if normal scatter present at site
- Very sensitive to detail
 - Image shows anisotropic
MR-SAD

- Input: partial structure/MR solution
- Possible atom types

Better maps

Heavy atom parameters

H^+, H^- estimates

SAD-function
Other Programs

- Acorn
 - Direct method based density modification
 - Free lunch
- OASIS
 - SAD ambiguity breaking
- Venerable
 - RANTAN, MLphare
- External
 - SHELX, HKL2MAP
 - Autosharp