Dictionary of ligands

Some of the web and other resources

- Small molecules
- DrugBank: <u>http://www.drugbank.ca</u>/
- ZINC: http://zinc.docking.org/index.shtml
- PRODRUG: <u>http://www.compbio.dundee.ac.uk/Web_Servers/prodrg_down.html</u>
- CACTVS: <u>http://www2.chemie.uni-erlangen.de/software/cactvs/</u>
- Cambridge structural database CSD: <u>http://www.ccdc.cam.ac.uk/products/csd/</u>
- Macromolecules
- PDB:
 - •European EBI: http://www.ebi.ac.uk/pdbe/
 - •USA RSCB: http://www.rcsb.org/pdb/download/download.do
- RASMOL (visualisation tool): <u>http://rasmol.org/</u>
- JMOL (Java based visualisation tool): http://jmol.sourceforge.net/

Why restraints: Two atoms, ideal case

• Distance between atoms 1.3Å. B values 20 and 50

- Thin lines single atoms
- Bold line sum of the two atoms

Chemical information: Phe at two different resolutions

• 0.88 Å

2 Å and High mobility

Example

• Data -1.9A

Unrestrained

Role of restraints

- When atoms have high B values and/or data are at low resolution then electron density may not show separate peaks
- If restraints would not be used then chemistry of molecule would be unreasonable.
- Role of restraints is to retain chemistry of molecule and at the same time describe electron density optimally.
- If atoms are close to each other it is unlikely that they will have hugely different B values

Using restraints

- Standard dictionary has description of around 10000 small molecules. If one of them is in your crystal then the will be used automatically. In the new version there will be more than 8 000.
- What happens if you have a ligand that is not in the dictionary. Then it is your responsibility to create chemically sensible description.
- Before starting to create a description you need to study bonding structure of your ligand.

PRODRG server

PRODRG: JME

JME is java based program for 2D drawing of small compounds. It is used in PRODRG2, MSDchem etc

Draw your ligand, transfer to PRODRG window and run

PRODRG output

AG

PRODRG Home FAQ PRODRG Beta How to obtain

PRODRG> Starting up PRODRG version 061128.0522 PRODRG> PRODRG written/copyrighted by Daan van Aalten PRODRG> and Alexander Schuettelkopf Your molecule + added hydrogens PRODRG> PRODRG> Questions/comments to dava@davapc1.bioch.dundee.ac.uk PRODRG> PRODRG> When using this software in a publication, cite: PRODRG> A. W. Schuettelkopf and D. M. F. van Aalten (2004). PRODRG> PRODRG - a tool for high-throughput crystallography PRODRG> of protein-ligand complexes. PRODRG> Acta Crystallogr. D60, 1355--1363. PRODRG> PRODRG> PRODRG> MOL mode detected. PRODRG> No stereo information found in input file. PRODRG> Molecule complexity index: 2.00. 1 hydrogen(s) added. PRODRG> PRODRG> 13 bonds ambiguous 16 bond angles 3 ambiguous PRODRG> PRODRG> 9 improper dihedrals ambiguous PRODRG> 4 dihedrals 0 ambiguous PRODRG> 2 partial charges 0 ambiguous PRODRG> Net charge on molecule: 0.000 PRODRG> Using charge groups. PRODRG> Writing GROMACS topology. PRODRG> GROMACS topology quality on 0-10 scale: 7.7 GENDRG> Best structure was iteration 841 with 0.70210928 PRODRG> RMSD from GROMOS band ideality (degrees) : PRODRG> RMSD from GROMOS band ideality (degrees) : 0.017 2.257 0.432 PRODRG> Number of improper improper dihedrals PRODRG> Writing: SCRHWMMPG PRODRG> Normal program end

Click to go to the following output:

Coordinates

- PDB (all H's, polar H's only or no H's)
- MDL Molfile (all H's, polar H's only or no H's)
- GROMOS87/GROMACS (pc/ar H's only)

X-ray refinement

- · CNS (parameters and topology)
- REFMAC5
- SHELX
- O (pre-9.x torsion entry, pre-9.x refi dictionary and 9.x dictionary)

Done

It can write out representation in various formats suitable for various popular software

Using resources from ccp4

Sketcher is under Refinement/Restraint Preparation/Monomer library sketcher.

CCP4 library of restraints

Monomers

A monomer entry describes an individual compound

CCP4 library contains:

- All amino acids
- All nucleic acids
- Common sugars
- Other organic and inorganic compounds:

in ccp4-6.13	2,500
in the next ccp4 release	10,500
(atom names as in PDB-v3)	

New monomer

CCP4 tools:

LIBCHECK - uses atom types

- creates monomer description from molecular graph
- creates coordinates from the monomer description

SKETCHER - GUI for LIBCHECK

MAKECIF - creates restraints for a particular macromolecule - a separate program wrapping a subset of REFMAC subroutines

Modifications and links

The idea of this mechanism is that

- while monomer records describe individual compounds
- modifications and links describe changes resulted from chemical reactions

Modification formalism allows to change a monomer Link formalism allows to join modified monomers together

(details later)

CCP4 library contains modifications

- terminal peptides and nucleotides
- methylated nucleotides
- deprotonated states of some peptide side chains

CCP4 library contains links and corresponding modifications for:

- polypeptide chains (CIS,TRANS), S-S bridges
- polynucleotide chains
- glycosylated proteins

Standard links

2xmb

FAQ: How to create links for glycosylated proteins?

A: For typical glycosylation cases this is not needed.

- necessary modifications and links are there in the standard ccp4 library
- by default REFMAC uses these library descriptions

Standard links used here:

FUL = Beta-L-Fucose NAG = N-Acetyl-D-Glucosamine

(1) "NAG-ASN" (2) "BETA1-4"

New links

When new link descriptions are needed:

side chain – side chain (e.g. TYR – TYR on the figure)

side chain – main chain (e.g. LYS – Ubiquitin)

side chain - ligand (e.g. LYS - PLP)

JLigand:

- new GUI for LIBCHECK
- descriptions of monomers (functionality of SKETCHER)
- descriptions of links and corresponding modifications

TYR–TYR covalent link in *M. tuberculosis* Hemoglobin O PDB id Ingk

JLigand: a graphical editor to create ligand and link descriptions

Andrey Lebedev, Paul Young, Alexei Vagin, Garib Murshudov

It works with java 1.5 or later versions

New link

Example:

- covalent linkage between LYS and Pyridoxal phosphate (PLP).
- describes PLP forming internal aldimine in aminotransferases.

Given:

- descriptions of LYS and PLP from the standard library

Needed:

- additional library file with the description of link LYS-PLP

Creating a new link, as seen in JLigand GUI

The two monomers are in effect reacted in silico Hydrogen atoms are dealt with automatically^{*)}

* it is also possible to visualise H-atoms and dealt with them explicitly

Contents: (1) modification "PLPmod1" (2) modification "LYSmod1" (3) link "PLP-LYS" No monomers

	000	PLP-LYS			
	data_mod_list				\sim
	loop_ _chem_mod.id _chem_mod.name _chem_mod.comp_id _chem_mod.group_id PLPmod1 "PYRIDOXAL-5'-PH LYSmod1 'LYSINE	HOSPHATE	" LYS .	PLP .	0
	data_link_list				
3→	loop_ _chem_link.id _chem_link.comp_id_1 _chem_link.mod_id_1 _chem_link.group_comp_1 _chem_link.comp_id_2 _chem_link.mod_id_2 _chem_link.group_comp_2 _chem_link.name PLP-LYS PLP PLPmod1 . PLP-LYS	LYS	LYSmod1 .		• •
	())+	1
				Close)

LYS

data link PLP-LYS

loop_ _chem_link_bond.link_id _chem_link_bond.atom_1_comp_id _chem_link_bond.atom_id_1 _chem_link_bond.atom_2_comp_id _chem_link_bond.atom_id_2 _chem_link_bond.type _chem_link_bond.value_dist _chem_link_bond.value_dist _chem_link_bond.value_dist_esd PLP-LYS 1 C4A 2 NZ double 1.260 0.020

loop_

_chem_link_angle.link_id _chem_link_angle.atom_1_comp_id _chem_link_angle.atom_id_1 chem_link_angle.atom_2_comp_id _chem_link_angle.atom_id_2 _chem_link_angle.atom_3_comp_id _chem_link_angle.atom_id_3 _chem_link_angle.value_angle _chem_link_angle.value_angle_esd PLP-LYS 1 C4A 2 NZ 2 CE 120.000 3.000 PLP-LYS 1 H4A 1 C4A 2 NZ 120.000 3.000 PLP-LYS 1 C4 1 C4A 2 NZ 120.000 3.000

loop_

_chem_link_plane.link_id _chem_link_plane.plane_id _chem_link_plane.atom_comp_id _chem_link_plane.atom_id _chem_link_plane.dist_esd PLP-LYS plan-2 1 C4 0.020 PLP-LYS plan-2 1 C4A 0.020 PLP-LYS plan-2 1 H4A 0.020 PLP-LYS plan-2 2 CE 0.020 PLP-LYS plan-2 2 NZ 0.020 Link "PLP-LYS": changes associated with covalent linkage between modified PLP and LYS

Bond

Angles

Plane

0 0 0

0

Regularisation

- The molecular graph of the total compound (not coordinates!) is loaded into LIBCHECK
- LIBCHECK generates target values and sigmas for restraints
- LIBCHECK generates initial coordinates
- REFMAC ("mode newentry", i.e. no X-ray data) refines these initial coordinates using restraints from LIBCHECK
- -The linked compound is displayed in JLigand GUI
- On request ("View" or "Save") but not before regularisation, the description of the total compound is split into two modifications and one link
- Descriptions of original non-modified monomers are discarded when they are available from the standard library

Utilising new link description

Good news: there is no need to manually edit the additional CIF-library, even to see its contents. JLigand does the job.

Three remaining steps:

- docking monomer(s) into electron density
- defining link in the pdb-file
- refinement of the structure with linked ligand using additional library

Docking into the electron density

In our example, this is completely independent step: the additional library is not used.

- non-modified monomer is taken from the standard library
- docking is performed, e.g. using coot:

- leaving atoms (O4A of PLP in this example) are removed
- in our example, one of the monomers (LYS) is already in the model

Defining link in the pdb-file

In general case, link cannot be applied automatically. For example:

- e.g. the same two atoms of the same two compounds can form single or double bond

- H-atom are not defined in the PDB-file

Therefore REFMAC needs additional instructions.

Refinement using additional library

Additional	library	is	defined
	here		

○ ○ ○ 🛛 Run Refmac5 Initial parameters from /Users/lebedev/Desktop/CCP4-2011/03_Wrk/JLigand_link_c...

		Help		
Job title model with ligands				
Do restrained refinement — using no prior phase information — input				
Input fixed TLS parameters				
no — twin refinement				
MTZ in 1ajs — data.mtz	Browse Vie	ew 📗		
FP FP Sigma SIGFP				
MTZ out 1ajs — refmac2.mtz	Browse	w		
PDB in 1ajs — refmac1 coot-0.pdb	Browse	w		
PDB out 1ajsrefmac2.pdb	Browse	w _		
LIB in 1ajs - refmac.cif Merge LIBINs	Browse	w		
Output lib 1ajs — refmac2.cif	Browse	w		
Include keyword file 1ajs -	Browse	w		
Data Harvesting				
Refinement Parameters				
Run - Save or Restore -	Close	1		

CCP4 library of restraints

JLigand: new link

JLignad: metal coordination

Metal chiralities in LIBCHECK

Metal chiralities in LIBCHECK

LIBCHECK can generate restraints for some of the coordination geometries:

from crossX chirality defined in input CIF-file
from 3D coordinates; this option is used in JLignad.

Example octahedral coordination

Ruthenium(II) "molecular wire", an inhibitor of a copper amine oxidase, PDB code 2BT3

3D-editing is essential here

2D representation:

Coordination of Ru is not obvious: – octahedral?

- trigonal prismatic?

Example of 3-D editing

Input formats

The molecular graph for a new ligand can be drawn:

- from scratch as in previous example
- starting from imported molecular graph (mmCIF, SDF, SMILE)
- starting from molecular graph created from imported coordinates (PDB)

As for the most of other tasks, the actual job is done by LIBCHECK while JLigand provides a GUI:

000	JLigand 1.0.1				
JLigand	File	Tab	Ligand	View Help	
New Ligand Lo C N	Op Sav Sav Ap Ap	en ve as Monomer ve as Link pend as Monon pend as Link	ner	CIF File PDB File SDF File Enter Smile String	ect Bonds
ю	Sav	e Coordinates	•		
S					

SMILES

SMILES notation is the most popular notation and almost all computational chemical websites, programs use this notation. They can read and write SMILES.

It is based on several simple rules. Full description of SMILES can be find from daylight websites.

http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

SMILES stands for Simplified Molecular Input Line Entry System.

It is concise and widely spread. It is very easy to learn. It was originally designed for manual input using text only editors. SMILES has become as a standard and it is a useful thing to know about.

SMILES

SMILES uses several very simple rules (these rules are sufficient to generate SMILES from structure and structure from SMILES).

Rules:

Atomic symbols used for atoms

Hydrogen atoms as a rule are implicit. They are deduced using valence information about atoms

Neighbouring atoms stand one after another

Single, double, triple and aromatic bonds are denoted using "-", "=", "#" and ":"

respectively. Single and aromatic bonds are usually not shown.

Branches represented by parentheses

Cycles are added by using matching digits on connecting atoms

Aromatic atoms are denoted using lower cases.

These rules are sufficient to describe most of the cases. Let us consider some examples

Ligand tutorials and JLIgand: www.ysbl.york.ac.uk/mxstat/Jligand

or search using google for jligand