Molecular Replacement (Alexei Vagin's lecture)

# Contents

- What is Molecular Replacement
- Functions in Molecular Replacement
- Weighting scheme
- Information from data and model
- Some special techniques of Molecular Replacement

### Molecular replacement programs and systems

Programs Amore **MOLREP** QS PHASER **EPMR** CNS **URO** 

Systems MrBump Phenix BALBES Many others

## Molecular replacement programs and systems



Systems

MrBump

Phenix



Many others

### Introduction: Where MR could help?

Same protein could be crystallised in different space groups Mutants Complexes Homologous proteins Some structure could be derived using NMR Homology modeling

MR works best when similarity (3D similarity) between search and target molecules is high and the search model is relatively big.

# Introduction

Molecular replacement (MR) is a phasing technique. It may help to derive initial phases. If the MR is successful then you need to do many cycles of refinement and model building.

Its attractive side is that it produces initial atomic model also. However avoiding bias towards model may be difficult especially at low resolution. If there are more than one copies of the molecule in the asymmetric unit then non-crystallographic (NCS) averaging may improve phases and maps.

If the resolution high enough (e.g. 2.5 or better) then automatic model building (arp/warp, solve/resolve, buccaneer) may help in model rebuilding.

### **Overall results** reported in PDB



Diagram showing the percentage of structures in the PDB solved by different techniques

67.5% of structures are solved by Molecular Replacement (MR)

21% of structures are solved by experimental phasing

# Molecular Replacement

#### unknown structure

MGDKPIWEQIGSSFIQHYYQLFDNDRTQLGAIY IDASCLTWEGQQFQGKAAIVEKLSSLPFQKIQH SITAQDHQPTPDSCIISMVVGQLKADEDPIMGF HQMFLLKNINDAWVCTNDMFRLALHNFG

If we can find the

#### known structure

PSPLLVGREFVRQYYTLLNKAPEYLHRFYGRNSSY VHGGVDASGKPQEAVYGQNDIHHKVLSLNFSECHT KIRHVDAHATLSDGVVVQVMGLLSNSGQPERKFMQ TFVLAPEGSVPNKFYVHNDMFRYEDE



# Molecular Replacement

#### MGDKPIWEQIGSSFIQHYYQLFDNDRTQLGAIY **IDASCLTWEGOOFOGKAAIVEKLSSLPFOKIOH** SITAODHOPTPDSCIISMVVGQLKADEDPIMGF If we can find the HQMFLLKNINDAWVCTNDMFRLALHNFG rotation and translation that puts the model in the correct position in the crystal cell, THEN we can origin b origin **O** calculate phases. HKL F HKL F φ 001 2.5 30 001 10.4 120 002 72.1 002 3.1 85 003 26.9 310 003 52.2 280

unknown structure

#### known structure

**PSPLLVGREFVRQYYTLLNKAPEYLHRFYGRNSSY** VHGGVDASGKPQEAVYGONDIHHKVLSLNFSECHT **KIRHVDAHATLSDGVVVOVMGLLSNSGOPERKFMO** TFVLAPEGSVPNKFYVHNDMFRYEDE

Φ

10

etc...

etc...

# Molecular Replacement

#### unknown structure

MGDKPIWEQIGSSFIQHYYQLFDNDRTQLGAIY IDASCLTWEGQQFQGKAAIVEKLSSLPFQKIQH SITAQDHQPTPDSCIISMVVGQLKADEDPIMGF HQMFLLKNINDAWVCTNDMFRLALHNFG

#### known structure

PSPLLVGREFVRQYYTLLNKAPEYLHRFYGRNSSY VHGGVDASGKPQEAVYGQNDIHHKVLSLNFSECHT KIRHVDAHATLSDGVVVQVMGLLSNSGQPERKFMQ TFVLAPEGSVPNKFYVHNDMFRYEDE

If we can find the rotation and translation that puts the model in the correct position in the crystal cell, THEN we can calculate phases.



# Molecular replacement

place a homologous model into the crystal with unknown structure or

Atomic Model --> EM map

# Molecular replacement

place a homologous model into the crystal with unknown structure

#### or Atomic Model --> EM map

## 6 - dimensional search check all orientations and positions

# Molecular replacement

place a homologous model into the crystal with unknown structure

> or Atomic Model --> EM map

## 6 - dimensional search check all orientations and positions

2) 3-d + 3-d search orientations positions Conventional Molecular Replacement

# Functions of molecular replacement

- Cross Rotation function
- Self Rotation function
- Translation function
- Phased Translation function
- Fast Packing function





 $\Omega$ 







#### **Optimal radius of integration**











# Stereographic projection



# **Self Rotation Function**

Space group P2<sub>1</sub>

one tetramer

Chi = 180.0



# **Self Rotation Function**

Space group P2<sub>1</sub>

one tetramer

Chi = 180.0



# **Self Rotation Function**

Space group P2<sub>1</sub>

one tetramer

Chi = 180.0



# **Translation Function**

To find relative position of molecules again Patterson function is used. "Correctly oriented" molecules are shifted to position r, corresponding Patterson is calculated and it is compared with observed Patterson. Maximum correspondence between two Pattersons indicate potentially correct position.

$$TF(s) = \int P_{obs}(r) P_{calc}(s,r) dr$$
  
s - vector of translation

# **Fast Packing Function**



Estimation of overlap:

 $\int \rho_k(\mathbf{r},\mathbf{s}) \rho_j(\mathbf{r},\mathbf{s}) d\mathbf{r}$ 

**Packing function:** 

$$P(\mathbf{s}) = \mathbf{1} - \sum_{k} \sum_{j} \int \rho_{k}(\mathbf{r}, \mathbf{s}) \rho_{j}(\mathbf{r}, \mathbf{s}) d\mathbf{r}$$

# Questions

How to use X-ray data

- Maximum resolution limit ?
- Minimal resolution limit ?
- Weighting scheme ?



#### Convolution



#### Convolution





### **Functions**






#### Real space $\leftarrow \mathscr{F} \rightarrow$ Reciprocal space

## $\leftarrow \mathscr{F} \rightarrow F(s)$ structure factors Map $\rho(r)$ $\leftarrow \mathcal{F} \rightarrow$ convolution product Patterson P(r) $\leftarrow \mathscr{F} \rightarrow F(s) F^*(s) = I(s)$ intensities

## High resolution data

- High resolution limit from Optical resolution
- Weights for high resolution data



 $\sigma_{res}^{res} = 0.356 resmax$  $\sigma_{res}^{2} = \sigma_{res}^{2} + \sigma_{res}^{2}$ 











Opt<sub>res</sub> = 2  $\sigma_{atm}$  $\sigma_{atm}^2 = (\sigma_{patt}^2 + \sigma_{res}^2)/2$ 



#### Optical Resolution (by sfcheck)



Weights for high resolution data and similarity





























### Low resolution data

Weights for low resolution data and size of model













## Weighting scheme

Two filters in Image processing:



We can consider this weighting scheme as an approximation to the likelihood approach

# Information in X-ray and Model must overlap



## Can we find solution?



## Can we find solution?


## Can we find solution?



## Can we find solution?



### What do you need to do before MR

Examine the data
Examine the model

# Examine the data (e.g by sfcheck)

- Completeness of data
- Signal-to-noise
- Anisotropy (make correction?)
- Pseudo-translation
- Twinning
- Resolution

## Sfcheck 1

|                                  |                                                                                            | _          |
|----------------------------------|--------------------------------------------------------------------------------------------|------------|
| Title: XXXXXXXX ?                |                                                                                            |            |
| Date: XX–XXX–XX                  |                                                                                            |            |
| PDB code: XXXX                   |                                                                                            |            |
|                                  |                                                                                            |            |
| Crystal                          | Structure Factors                                                                          |            |
| Cell parameters:                 | Input                                                                                      |            |
| a: 99.66 A b: 99.66 A c: 64.33 A | Nominal resolution range: $29.1 - 2.50$                                                    | ) A        |
| α: 90.00 β: 90.00 γ: 120.00      | Reflections in file: 797-                                                                  | 4          |
| Space group: H 3                 | Unique reflections above 0: 7974                                                           | 4          |
|                                  | above $1\sigma$ : 797                                                                      | 3          |
|                                  | above 3 $\sigma$ : 5020                                                                    | 6          |
|                                  | SFCHECK                                                                                    |            |
|                                  | Nominal resolution range: 29.1 – 2.50<br>\05max. from input data, min. from author\05      | ) A        |
|                                  | Used reflections: 7974                                                                     | 4          |
|                                  | Completeness: 96.7                                                                         | 1%         |
|                                  | $R_{stand}(F) = \langle \sigma(F) \rangle / \langle F \rangle :$ 0.08                      | 37         |
|                                  | Anisotropic distribution of Structure Factors<br>ratio of eigen values: 0.6510 0.6510 1.00 | )00        |
|                                  | B_overall (by Patterson): 34.4                                                             | <b>\^2</b> |
|                                  | Optical resolution: 1.82                                                                   | 2 A        |
|                                  | Expected opt. resol. for complete data set: 1.82                                           | 2 A        |
|                                  | Estimated minimal error: 0.20                                                              | )2 A       |
|                                  | Pseudo-translation is not detected                                                         |            |

### Sfcheck 2





## Examine the model

- Look at the molecular shape and flexibility
- Check the sequence similarity
- Estimate the model size
- Choose the method of the model correction
- Estimate number of copies

Automatic correction of the model using sequence alignment





| ۷   | vitho | ut aligr | nment corr  | ection             | W              | vith a | alignme | nt correc | ction |    |
|-----|-------|----------|-------------|--------------------|----------------|--------|---------|-----------|-------|----|
| P 2 | 1 21  | 2        | 2 m<br>Rota | odels i<br>tion fu | in a.<br>incti | u.c    |         | Identit   | y 21  | 7% |
|     |       | Rf R     | f/sigma     |                    |                |        | Rf      | Rf/sig    |       |    |
| RF  | 1     | 252.9    | 4.99        |                    | RF             | 1      | 329.2   | 5.27      |       |    |
| RF  | 2     | 230.5    | 4.55 *      |                    | RF             | 2      | 304.9   | 4.88      |       |    |
| RF  | 3     | 220.3    | 4.34        |                    | RF             | 3      | 282.6   | 4.52      | *     |    |
| RF  | 4     | 206.1    | 4.06        |                    | RF             | 4      | 249.6   | 3.99      |       |    |
| RF  | 5     | 200.3    | 3.95        |                    |                | •      | •       |           |       |    |
| • • | • •   |          |             |                    | RF             | 18     | 205.7   | 3.29      | *     |    |
|     |       |          | Trans       | lation             | fund           | ctio   | n       |           |       |    |
| RF  | TF    | Rfac     | Score       |                    | RF             | TF     | Rfac    | Score     |       |    |
| 1   | 3     | 0.55     | 4 0.206     |                    | 3              | 2      | 0.556   | 0.197     |       |    |
| 2   | 3     | 0.55     | 4 0.205     |                    | 1              | 4      | 0.559   | 0.194     |       |    |
| 6   | 1     | 0.55     | 6 0.199     |                    | 18             | 2      | 0.560   | 0.194     |       |    |
| 3   | 4     | 0.55     | 6 0.199     |                    | 2              | 4      | 0.562   | 0.186     |       |    |
| • • | •     |          |             |                    | wi             | th f   | ixed mo | odel      |       |    |
| can | not   | find     | solution    |                    | 18             | 1      | 0.547   | 0.233     |       |    |
|     |       |          |             |                    | 20             | 4      | 0.558   | 0.200     |       |    |

2 4 0.557 0.200

## Model improvement

Set atomic B values according to accessible surface area



### Expected number of copies

No of copies = 0.8 Volume of the au Volume of the molecule

# Time to have a break

### NMR model

Rotation function

Use as single model or Averaged individual RF ⇔ Averaged intensities

Translation function

Use as single model or Averaged individual TF Special techniques of molecular replacement

- Locked Rotation function
- Multi-copy search
- Use phases after Refinement
- Spherically Average Phased Translation function

Self rotation and locked RF Peaks selected from the self rotation function can be used for locked cross rotation function. Locked rotation function is averaged RF according to NCS

| So]      |   | Space of   | group : H | H 3      |       |        |
|----------|---|------------|-----------|----------|-------|--------|
| So]      | - | Rota       | ation fur | nction - |       |        |
|          | _ | theta      | phi       | chi      | Rf    | Rf/sig |
| RF       | 1 | 47.90      | 67.54     | 158.59   | 1190  | 6.37   |
| RF       | 2 | 79.14      | -166.90   | 89.47    | 1050  | 5.05   |
| RF       | 3 | 97.26      | -139.11   | 145.11   | 848   | 4.55   |
| RF       | 4 | 137.75     | -156.31   | 94.80    | 843   | 4.44   |
| <b>v</b> | ١ | <b>v</b> v |           |          |       |        |
| So]      |   | Lock       | ced Rotat | tion fur | ction |        |
|          | _ | theta      | a phi     | chi      | Rf    | Rf/sig |
| RF       | 1 | 127.99     | 139.59    | 122.00   | 2034  | 6.90   |
| RF       | 2 | 123.49     | -52.42    | 122.11   | 1979  | 6.80   |
| RF       | 3 | 71.51      | -171.88   | 105.08   | 1541  | 5.16   |
| RF       | 4 | 44.71      | -107.06   | 154.01   | 1500  | 4.45   |

## Multi-copy search



### **Difficult case**

Space group H3 Resolution 1.8A One molecule in a.u.c Identity 35%

1. Using complete model - failed

2. Using domains separately - failed

3. Multi-copy search - success

### **Initial model**



# RF & TF

|   | com                           | plet                       | e model                                            | domain 1                        |                                    |                            |                                                    |                            | domain 2                      |                            |                                                    |
|---|-------------------------------|----------------------------|----------------------------------------------------|---------------------------------|------------------------------------|----------------------------|----------------------------------------------------|----------------------------|-------------------------------|----------------------------|----------------------------------------------------|
|   | RF                            | TF                         | Score                                              |                                 | RF                                 | TF                         | Score                                              |                            | RF                            | TF                         | Score                                              |
|   | 17<br>1<br>8<br>14<br>5<br>11 | 7<br>1<br>8<br>7<br>6<br>2 | 0.208<br>0.204<br>0.203<br>0.199<br>0.196<br>0.195 | 1<br>2<br>3<br>4<br>5<br>6<br>7 | 10<br>15<br>12<br>5<br>3<br>6<br>7 | 2<br>7<br>1<br>3<br>1<br>7 | 0.211<br>0.209<br>0.206<br>0.202<br>0.202<br>0.201 | 1<br>2<br>3<br>4<br>5<br>6 | 14<br>8<br>26<br>5<br>10<br>1 | 1<br>1<br>8<br>6<br>1<br>2 | 0.205<br>0.204<br>0.203<br>0.203<br>0.202<br>0.200 |
| 3 | 16<br>12                      | 6<br>1                     | 0.191<br>0.191                                     | 8<br>9                          | 4<br>1                             | 2<br>2                     | 0.198<br>0.197                                     | 21                         | 24                            | 1                          | 0.192                                              |

•

•

•

•

## Domain 1 + 2 : Multi-copy search

#### multi-copy Search

| R1 | R2 | STF T | F PFma | x PFmin | Score |
|----|----|-------|--------|---------|-------|
| 1  | 1  | 2     | 2 0.65 | -11.55  | 0.209 |
| 1  | 2  | 5     | 1 0.98 | -15.90  | 0.212 |
| 1  | 3  | 1     | 1 0.99 | -12.73  | 0.223 |
| 7  | 24 | 3 :   | 1 0.99 | -13.59  | 0.248 |

domain1 (rf7) , domain2(rf24)

## Initial model and MR solution



MR

initial

## MR solution and final structure





### **Use Phases after Refinement**

## **Example: Domain motions - 1tj3**

"unknown" structure (1tj3)

search model with sequence identity 100% Search for the whole molecule using standard MR protocol failed because of domain flexibility.

Search by domains using standard MR protocol failed because of small size of the second domain.

Structure was then solved manually in three steps:

1) standard MR search for larger domain;

2) refinement of the partial model;

3) search for smaller domain in the masked map (generated from REFMAC's FWT and PHIWT)

## **Example: Domain motions - 1tj3**

"unknown" structure (1tj3)

search model with sequence identity 100%



Search for the whole molecule using standard MR protocol failed because of domain flexibility.

Search by domains using standard MR protocol failed because of small size of the second domain.

Structure was then solved manually in three steps:

- 1) standard MR search for larger domain;
- 2) refinement of the partial model;

3) search for smaller domain in the masked map (generated from REFMAC's FWT and PHIWT)

# Fitting model into X-ray or EM map

- 1. find orientation (RF)
- 2. find position (PTF)

Alternative approach:

- 1. find position
- 2. find orientation

### Spherically Averaged Phased Translation Function



SAPTF(s) =  $\int \overline{\rho_s}(r) \rho_m(r) r^2 dr$ 

### Spherically Averaged Phased Translation Function



# SAPTF(s) = $\int \overline{\rho_s}(r) \rho_m(r) r^2 dr$

### Spherically Averaged Phased Translation Function



# SAPTF(s) = $\int \overline{\rho_s}(r) \rho_m(r) r^2 dr$

### **SAPTF** as Fourier series

By expanding SAPTF into spherical harmonics it is possible to represent it as a Fourier series

SAPTF(s) =  $\int \overline{\rho_s}(\mathbf{r}) \ \overline{\rho_m}(\mathbf{r}) \ \mathbf{r}^2 \ d\mathbf{r} =$ =  $\sum_h A_h \exp(2\pi i hs)$ 

 $A_{h} = \sum_{n} F_{h} c_{00n}(R) j_{0}(2 \pi Ra) b_{00n}$ 

# Algorithm

- Find position: Spherically averaged phased translation function
- 2. Find orientation: Local phased rotation function
- 3. Check and refine position : Phased translation function