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Abstract. Macromolecular crystallography (MX) is one of the popular tech-
nique available to the structural biology community that allows elucidation of
atomic and sometimes electronic details of biologically important molecules. One
of the important problems of the field is the overall atomic model quality estima-
tion. In this paper some of the probability distributions used in MX is reviewed
and generalised for one particular crystal growth phenomenon - twinning. It is
shown that in the limiting case of perfect twinning the distributions are related
to non-central χ2 distribution. Analysis of the most popular reliability index -
Rfactor convincingly illustrates that it is a poor quality factor and if care is not
exercised then the existing techniques may give misleading results and create
an illusion of high model quality when it is not the case. It is concluded that
designing an objective and preferably computationally efficient reliability index
for the comparisons of the quality of atomic models is urgently needed.

1. Introduction

Macromolecular crystallography (MX) is one of the most popular experimen-
tal techniques available to the structural biology community that is able to give
atomic and electronic details of biologically important molecules with high accu-
racy. According to the Protein Data Bank (PDB) [2] around 85% of more than
68000 available three dimensional structures have been analysed using this tech-
nique (www.pdb.org/pdb/). Other widely used experimental techniques used for
the derivation of three dimensional structures of macromolecules are Nuclear Mag-
netic Resonance and Electron Microscopy.

The PDB is a valuable resource of the structural biology that have wide range of
applications including structure based drug design, protein folding problem, study
of protein mechanisms and signal transduction in organisms. The PDB is also
recycled and used as a starting model for new MX structure analysis [11]. For all
these applications it is important to be able to select high quality models. To select
best quality models among similar ones it is necessary to have objective reliability
indicators that work sufficiently well for all models independent of the data they
were derived from. There are already many software tools to analyse quality of
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the derived models and validate them [22, 7, 6]. These software tools either rely
only on chemical and structural properties of the atomic models ignoring the fit to
the experimental data or use available reliability index that is, as it will be shown
in this paper, a poor quality indicator, especially when two different models from
two different crystals are compared.

One of the most widely used reliability index is so-called Rfactor:

(1) Rfactor =

∑
H ||FH,o| − |FH,c||∑

H |FH,o|

Where |FH,o|-s are observed data - amplitudes of the structure factors or Fourier
coefficients of crystals and |FH,c|-s are those calculated from the atomic model. The
summation is carried over all data points included in the model derivation.

Behaviour of this index depending on the model quality has been the subject
of studies for some time [12, 19]. However these studies included only very simple
cases - single crystal without any complications. It is well known that in many
cases data collected as a result of X-ray experiment are from more than one crystals
[16, 23, 10] resulting in completely different statistical properties of these datasets.
Since statistical properties of datasets from single and multiple crystals are differ-
ent it can be expected that behaviour of any property will be different, Rfactor is
not an exception. Therefore model comparison based on these indicators will give
misleading results.

It should be noted that all available MX structure optimisation [13, 1, 18, 5, 3]
- refinement software produce Rfactor as a reliability index and it is used to com-
pare of quality of different models derived using different experimental conditions.
Therefore it is important to anlalyse the behaviour of Rfactor under different con-
ditions. This paper describes its behaviour under two conditions, data from single
and twinned crystals, and demonstrates that in general Rfactor is a poor quality
indicator.

Macromolecular crystallographers usually use so-called Rfree to validate derived
models. This value is calculated using a portion of the observed data that are left
from remaining part of calculations, thus reducing influence of overfitting. The
results described in this contribution are equally valid for Rfactor and Rfree.

Organisation of the paper: In the first section a brief review of relationship
between crystallographic calculations and Fourier series is given. In the second
section structure factor probability distributions under two simplified conditions
are derived. In the third section behaviour of Rfactor under different conditions are
derived and analysed. The final section describes the shortcoming of the current
analysis and gives the list of the problems to be solved to design new quality
indicators that can be used for objective comparison of various Macromolecular
structures.
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2. Crystallographic calculations and Fourier series

MX experiment deals with crystals and observations from crystals are related to
Fourier coefficients of these crystals. By definition crystals are three-dimensional
periodic entities and therefore their Fourier transformation is expressed as Fourier
series. Maximum non-repeating part of the crystals is called asymmetric unit. The
minimal paralelepipedic part of the crystal that when repeated by translations in
three directions fills the whole space is called unit cell of the crystal.

Let us assume that we have a crystal and it contains N atoms with positions xi
i = 1, N . Then electron density in the crystal can be represented as a sum of the
atomic electron densities:

(2) ρ(x) =
N∑
i=1

ρi(x− xi)

Where ρi(x) is the electron density for the i-th atom. Usually atomic electron
densities are approximated using the sum of Gaussian functions. It allows devel-
opment of computationally efficient algorithms for crystallographic calculations,
however the results in this paper do not depend on such approximations.

The Fourier coefficients of the electron density in the crystal can be expressed
as:

(3) FH = F(ρ(x)) =
N∑
i=1

F(ρi(x− xi)) =
n∑
i=1

fie
2πιHT xi

Where fi is the Fourier transformation of ρi(x) - formfactor of the i-th atom.
As it can be expected in general FH is a complex number. However if a crystal

is centrosymmetric, i.e. for each atom with the position xi there is an atom
with the position −xi then these coefficients will be real numbers, since in this
case the total electron density will be centrosymmetric the Fourier coefficients
of a centrosymmetric function will be real numbers. Macromolecules by their
nature do not have centre of symmetry, therefore their crystals are in general non-
centrosymmetric and therefore we consider only non-centrosymmetric cases. It
should be noted that since in general crystals have some rotational symmetry some
of the Fourier coefficients in general will behave like those from centrosymmetric
crystals. There is no difficulty of extending the analyses carried out in this paper to
the centrosymmetric cases, however it would not change the qualitative conclusions
of the paper.

In general crystals obey one of the possible 230 space group symmetries and that
put certain conditions on Fourier coefficients. For full review of crystallography
and crystal symmetry see Vainshtein [21], International Table for crystallography
[8]. For simplicity of the derivations, interpretations and to avoid unnecessary com-
plications of notations we only consider crystals without any rotational symmetry
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- a so-called P1 space group. The results with minor modifications are applicable
for all crystals.

We will need also expressions for real and imaginary parts of the structure
factors:

(4) FH = AH + ιBH =
n∑
i=1

fi cos 2πHTxi + ι

n∑
i=1

fi sin 2πHTxi

It is clear that bi-scalar product - HTxi must be invariant under coordinate
transformation. Thus coordinate system in the Fourier - reciprocal space depends
on the coordinate system in the space where atoms live - real space. When xi are in
the crystal coordinate system where 0 ≤ xi < 1 then the corresponding coordinates
in the reciprocal space are usually integers and they are called Miller indices. Miller
indices are denoted by H. When atomic coordinates are in orthogonal system
with atomic units then the corresponding coordinates in the reciprocal space are
denoted by s . 1/|smax| = 1/max(|s|) for the data set is called the resolution of
the diffraction data. Usually data set is collected in a spherical shell with between
smax = max(|s|) and smin = min(|s|). dmax = 1/smax and dmin = 1/smin are
called resolution limits of the data. For the indices of the structure factors or
when working with Fourier series it is convenient to use Miller indices, however
when atomic positions and errors in them are considered it is convenient to use
orthogonal system. We will use H and s notations interchangeably and coordinate
systems used will be clear from the context.

The result of crystal diffraction experiment from a single crystal is related to
the amplitude of the structure factors:

(5) IH,o ∝ |FH |2 = |AH |2 + |BH |2

In general the observed data should be considered as random variables with
some probability distributions. Usually the probability distribution of observed
intensities are approximated using normal distribution:

(6) P (IH,o; IH,true) =
1

σH,o
√

2π
e
−

(IH,o−IH,true)
2

2σ2
H,o

Where IH,o is observed, IH,true is true intensities of the structure factors, σo is
standard deviation. For simplicity we will assume that observed structure fac-
tors are equal to the true structure factors. Essentially it means that σH,o → 0
and consequently P (IH,o; IH,true) = δ(IH,o − IH,true), with δ(x) denoting Dirac’s
δ-function. Although it is a gross simplification it does not affect the qualitative
conclusions drawn in this paper. In principle the effects of the experimental errors
can be accounted for by adding a simple integration over experimental errors. In
the following sections we will drop subscripts o and true assume that we are deal-
ing with observed and/or “true” structure factors. We will also drop subscript H
since we usually will be dealing with either single index or pair of indices.
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3. Some structure factor probability distributions

Let us assume that we have two crystals with exactly same unit cell dimensions
and both crystals contain exactly same number of atoms and there is one to one
correspondence between atoms in these crystals. Let us further assume that po-
sitions of the atoms in the second crystal can be expressed yi = xi + ∆xi. In
addition let us also assume that atoms in each crystal are independent of each
other and uniformly distributed over the asymmetric unit of the crystal, ∆xi are
independent of each other and of xi. Let us also assume that all ∆xi have exactly
same distributions. Since the number of atoms is large and under these assump-
tions conditions of the central limit theorem are fulfilled (e.g. the first, second
and third moments are finite) we can use four dimensional normal distribution as
an approximation to the joint probability distribution of the structure factors of
the first and second crystals. For this we need to derive the first and the second
moments of the imaginary and real parts of the structure factors of these crys-
tals. Let us use the following notations: subscripts 1 and 2 are crystal numbers,
F1 = (A1, B1) and F2 = (A2, B2). Then for mean values we can write.

(7) < A1 >=< B1 >=< A2 >=< B2 >= 0

Here we used the fact that under above assumptions

< cos 2πHTxi >=< sin 2πHTxi >=
1

|V |

∫
V

cos 2πHTxidxi = 0

for all i-s. Where V is the unit cell of the crystal, |V | is the volume of the unit
cell, < . > denotes expectation or mean value.

< A2
1 >=< B2

1 >=< A2
1 >=< B2

1 >=
1

2

∑
f 2
j(8)

< A1A2 >=< B1B2 >=
1

2

∑
f 2
i < cos 2πHT∆xi >

< A1B1 >=< A2B2 >=< A1B2 >= 0

Here we additionally used the fact that under above assumptions

< cos2 2πHTxi >=< sin2 2πHTxi >=
1

2
< cos 2πHTxi cos 2πHT (xi + ∆xi) >=< sin 2πHTxi sin 2πHT (xi + ∆xi) >=

1

2
< cos 2πHT∆xi >
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Since all ∆xi-s have the same distribution we can writeD(s) =< cos 2πHT∆xi >.
If we use notations Σ =

∑
f 2
i then for the full covariance matrix we can write:

Σ4 =
Σ

2


1 0 D 0
0 1 0 D
D 0 1 0
0 D 0 1

(9)

Thus the joint probability distribution of structure factors of two crystals can
be approximated by a four dimensional normal distribution:

(10) P (A1, B1, A2, B2) = N4(04,Σ4)

where 04 = (0, 0, 0, 0) is a four dimensional vector of zeros.
In the following discussions we will assume that Σ = 1. It can be achieved by

dividing all A,B-s by the corresponding
√

Σ and work with so-called normalised
structure factors. This simple trick does not change the results of this paper.
When we need to derive distributions of the structure factors then we simply can
use denormalisation which is just a simple change of variables.

This the multivariate normal distribution forms the basis of the probability dis-
tributions derived and used in crystallography. For example from this distribution
one can deduce that the marginal distribution of the structure factors of a sin-
gle crystal is two dimensional normal distribution with zero mean and identity
variance matrix:

(11) P (A1, B1) =

∫
R2

P (A1, B1, A2, B2)dA2dB2 = N(02, I2/2)

where 02 = (0, 0) is a two dimensional zero vector and I2 is two dimensional
identity matrix.

The conditional distribution of the structure factors of one crystal given another
one is a two dimensional normal distribution with mean equal to (DA2, DB2) and
variance matrix equal to I2/(2(1−D2)):

(12) P (A1, B1;A2, B2) =
P (A1, B1, A2, B2)

P (A2, B2)
= N

(
(DA2, DB2),

1

2(1−D2)
I2

)
Two extreme cases of D are of special interest: D = 0 and D = 1. In the first

case since the conditional distributionn of the first crystal given the second crystal
is independent of the structure factors of the second crystal therefore two crystals
are independent. This case is usually called unrelated crystals. In other words
there is no information in the second crystal about the first crystal and vice versa.
In the second case the conditional distribution can be expressed as a product of
Dirac’s δ function.

P (A1, B1|A2, B2) = δ(A1 − A2)δ(B1 −B2)

That is the case when two crystals are identical, i.e. knowing one of the crystals
is sufficient to describe everything in the second crystal.
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Using the distributions real and imaginary parts of the Fourier coefficients we can
derive the distribution of amplitudes of structure factors. Since |F1|2 = |A1|2+|B1|2
we can use a well known result from the Statistics [20] that if random variables
zl, l = 1, k have normal distributions with mean and variance equal to µl and σ2

l

then the distribution of
∑k

l=1(zl/σl)
2 is non-central χ2 distribution 1with k degrees

of freedom and non-centrality parameter equal to
∑k

l=1(µl/σl)
2. Thus 2|F1|2

1−D2 has

the non-central χ2 distribution with the degrees of freedom equal to two and non-

centrality parameter equal to 2D2|F2|2
1−D2 . And finally we can write:

(13) P (|F1|2; |F2|2) =
2

(1−D2)
χ2
2(

2|F1|2

1−D2
,
2D2|F2|2

1−D2)
)

This equation with some modification is used by many MX software that is
based on MX Maximum likelihood modelling of the data from X-ray diffraction
experiment [13, 1, 5, 3]. In crystallography it is known as Rice distribution [17, 4,
15]. More precisely the conditional distribution of distribution of |F1| given |F2| is
Rice distribution and that is what is used in MX structure analysis. However it
easily can be derived from the general theory of χ2 distributions.

3.1. Expression for D. In general differences - ∆xi between two crystals can
have any distribution. However for simple illustrative purposes we can assume
that their distribution is three dimensional normal distribution with zero mean
and diagonal covariance matrix:

(14) P (∆x) = N(03, σ
2
xI3)

where σx is the standard deviation of the differences.
Using this assumption we can write for D:

(15) D =

∫
R3

cos(2π∆xs)P (∆x)d∆x = e−2π
2σ2
x|s|2

This expression was used by Luzzati [12] to study the behaviour of Rfactor-s in
single crystal cases. Again in the limiting cases when 1) σx →∞ then two crystals
are unreleated and when 2) σx → 0 then two crystals are identical.

3.2. Twinning in Crystallography. It is often the case that two or more orien-
tations of a a crystal are indistinguishable. These cases usually happen when the
unit cell (more precisely crystal lattice) have higher symmetry than the crystal.
As a result under certain physical conditions crystals grow in several orientations
simultaneously. By analysing the whole PDB Lebedev et al [10] showed that the
occurrence of this phenomenon in macromolecular crystals is non-negligible. This
phenomenon crystal growth in multiple indistinguishable directions is called mero-
hedral twinning. When there are only two orientations of the crystal related by two

1Density of the probability distribution for non-central χ2 distribution with k degrees of

freedom and non-centrality parameter equal to λ: χ2
k(x, λ) = e−(x+λ)x

k
2
−1

2
k
2

∑∞
i=0

(λx)k

22kk!Γ( 2k+i
2 )
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fold rotation then the phenomenon is called hemihedral twinning. For simplicity
we will consider only hemihedral twinning case.

Because of the nature of the diffraction experiment the total observations from
two crystals orientations are the sum of the intensities of individual crystals. Let
us denote fractional occupancy of one of the crystals by 1−α, where 0 ≤ α ≤ 0.5.
Then the occupancy of the second crystal is α. Observed intensities can be written
as a weighted sum of intensities from two crystals with weights equal to 1−α and
α:

IT,1 = (1− α)I1 + αI2(16)

IT,1 = αI1 + (1− α)I2

where I1 and I2 are two contributing intensities from two crystal, IT,1 and IT,2
are two corresponding observations.

When α = 0 then there is no twinning and it is a single crystal case. When
α = 0.5 then the twinning is called a perfect twinning. In principle when α < 0.5
the equation 16 can be solved to find I1 and I2, however errors in the resulting
data increases with proportionality coefficient of 1/(1− 2α). Moreover for α = 0.5
it is imposible to solve the equation 16. Therefore it is usually advised to use the
experimental data directly. For perfect twin case the probability distribution of
structure factors can be derived using properties of the non-central χ2 distributions
[20]. To derive the necessary distribution we use the assumption that different
structure factors (i.e. I1 and I2) from one crystal are independent of each other.

Since the distributions of 2I11
1−D2 and 2I12

1−D2 are non-central χ2 then 22(I11+I12)
1−D2 will

have non-central χ2 distribution with degrees of freedom four and non-centrality

parameter D2(I21+I22
1−D2 . Then for the distribution of IT11 we can write:

(17) P (IT11 =
4

(1−D2)
χ2
4(

4IT11
1−D2

,
4D2IT21
1−D2

)

This distribution can be used for MX crystallographic modelling in the presence
of perfect twinning. There is no difficulty of generalising it to more than two
crystal cases , i.e. more general merohedrally twinned cases. Note that when
D = 0 then the distribution reduces to the one that is used in crystallography for
diagnosis of twinning [16].

4. Behaviour of Rfactor-s under different conditions

Rfactor-s given by the equation 1 are calculated between structure factors of two
crystals. Data from related crystals either can be from two different crystalline
entities produced during crystal structure analysis or during fitting of the atomic
model into the experimental data. In the first case both data sets are observations
and in the second case one of them corresponds to the observations and another
one corresponds to the model under consideration. Although our purpose is to
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analyse the reliability index during model building and optimisation, the results
are equally applicable when data are from two different actual crystals.

In the first case actual twin fractions of the crystals may be different and in
the second case α is estimated as a part of model building procedure and it is
not necessary that the estimated value is equal to the actual value. Therefore we
analyse Rfactor-s between two crystals with different twin fractions.

Let us assume that we have two data sets from two related crystals. Both these
crystals may have been twinned. Let us denote as the first index of the subscripts
crystal number and the second index the contributor number. For example I11
is the first contributor from the first crystal. We can now write an equation for
Rfactor between data sets from two twinned crystals:

(18) Rfactor =

∑
|
√

(1− α)I11 + αI12 −
√

(1− β)I11 + βI12|∑√
(1− α)I11 + αI12

where α and β are corresponding twin fractions for two crystals. During the
model building and optimisation α is the “true” and β is the estimated twin
fraction.

To estimate Rfactor using the probability distributions of the structure factors
let us assume that in the reciprocal (Fourier) space in narrow spherical shells
frequency of the structure factors represent their true frequency. This assumption
works sufficiently well in practice. Let us additionally assume that points in the
reciprocal space are sufficiently dense and the summation over H can be replaced
by integration. Then for an approximation of Rfactor we can write:

(19) Rfactor =

∫ smax
smin

∫
R8 |FT,11 − FT,21|P (F)|s|2dFd|s|∫ smax

smin

∫
R8 |FT,11|P (F))|s|2dFd|s|

where

FT,11 =
√

(1− α)I11 + αI12
FT,21 =

√
(1− β)I21 + βI22

F = (F11, F12, F21, F22) = (A11, B11, A12, B12, B21, A21, B21, A22, B22)
dF = dA11dB11dA12dB12dA21dB21dB21dA22dB22

P (F) = P (A11, B11, A21, B21)P (A12, B12, A22, B22)

smin and smax are the reciprocal space vector lengths correponding to the minimum
and maximum resolutions of the data used for analysis.

To estimate Rfactor given by the equation 19 we use a numerical integration.
The integration over the structure factors is performed using Monte Carlo method
where sampling is performed using two four dimensional normal distributions and
integration over |s| is performed using a simple trapesoid rule. Calculation are done
using a script written in statistical package language - R [14]. To produce figures
after the integration smooth spline function [9] as implemented in the package R
was used.
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All analysis have been done for typical resolution range between 20Å and 2Å.
Note that the results are for illustration purpose and changing the resolution range
alters results only quantitatively.

4.1. Limiting case 1: unrelated crystals. Recall that when crystals are unre-
lated then D = 0. For this case we consider four combination of α and β equal
to 0.5 and 0. During model building and omptimisation these cases have the fol-
lowing interpretation: 1) α = 0.5, β = 0.5, data are from the perfectly twinned
crystal and twin is modelled; 2) α = 0.5 β = 0, data are from the perfectly twinned
crystal and twin is not modelled; 3) α = 0, β = 0.5, data are from single crystal
and perfect twin is modelled; 4) α = 0, β = 0, data are from single crystal and
twin is not modelled. Note that the case number four was analysed by Luzzati
[12] and Srinavasan and Parthasaraty [19]. Their results are in perfect agreement
with the results shown here.
Rfactor-s for these four limiting cases are shown on Table 1. It is seen that

if the data are not from twinned crystals and twin is modelled then R factor is
lower than if twin is not modelled. It shows that in the beginning of the crystal
structure analysis if twin is modelled Rfactor may be lower thus creating an illusion
that model is related to the crystal when it is not.

Table 1. Rfactor-s between unrelated crystals for four different
combination of limiting twin fractions. These results are resolution
independent

Twin \Modelled Yes No
Yes 0.41 0.49
No 0.52 0.58

Figure 1 shows the behaviour of Rfactor-s when there is no twin and twin is
modelled with different twin fractions. As it can be seen the Rfactor has minimum
when β = 0.5.

This simple limiting case demonstrates shortcomings of this reliability index at
the early stages of crystal structure analysis.

4.2. Limiting case 2: identical crystals. Another interesting case is when two
crystals are identical and the only difference between them is the presence or
absence of twinning. As it was noted above this case corresponds to D = 1 which
is the same as σx → 0.

Two most common cases at the end stages of structure analaysis are when 1)
twin is not present and it is not modelled and 2) twin is present it is not modelled.
In the first case in very unlikely scenario of D = 1, Rfactor would be zero as
expected. In the second case Rfactor would be very high thus wrongly indicating
that model has large errors. It is very unlikely that when atomic model error is
zero and modelled twin fraction is 0.5. Optimisation programs would give much
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Figure 1. Rfactor vs modelled twin fraction. No twinning is
present, i.e. α=0 and β is estimated. As it can be seen the minimum
of Rfactor is when β is near to 0.5

Table 2. Rfactors between identical crystals with four different com-
binations of limiting twin fractions

Twin \Modelled Yes No
Yes 0 0.28
No 0.29 0

smaller value of β However it is still interesting to look at the behaviour of Rfactors

with different β values. It can be seen from 2 that in this case Rfactor has minimum
when β is zero. We can conclude that towards the end of structure analysis twin
fraction is optimised close to its true value.

4.3. Related crystals: atomic model with error. More interesting and prac-
tical cases are when crystals are not identical but related, i.e. 0 < D < 1 and twin
is present in both crystals. This case corresponds to the modelling of MX data
when the model is essentially correct but has some errors.

Figure 3 shows dependence of Rfactor on model errors σx for four different lim-
iting values of α and β. From the figure it is seen that if twin is present then
modelling twin could reduce R-factors by more than 10% without improving qual-
ity of the atomic model. Moreover when there are no twin and model error is
large then modelling twin may give lower Rfactor thus creating a false illusion of
model improvement. For example if the standard deviation of the model error is
around 0.4Å then modelling twin will improve reliability index immediately and
give wrong twin fractions thus resulting in wrong model.
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Figure 2. Rfactor vs modelled twin fraction. No twinning is
present, i.e. α=0 and β is estimated. In this case twin fraction
would be estimated correctly to be equal to the true value - 0

Figure 3. Rfactor vs σx for four different limiting cases. 1) Perfect
twin and twin modelled - cyan line; 2) Perfect twin with unmodelled
twin - red line 3) No twin with perfect twin modelled - blue line 4)
No twin and no modelled twin - black line. σx is in Å

As figure 4 shows if there are some errors in the atomic model then even if twin
is not present then minimum of Rfactor is when β is different form zero, i.e. the
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actual value of α. This figure demonstrates that if the estimated twin fractions
are very small they should be should be interpreted with care.

Figure 4. Rfactor vs modelled twin fraction. No twinning is
present, i.e. α=0, β is estimated and σx=0.3.

5. Conclusions and Future perspectives

In this paper we reviewed some of the basic structure factor distributions used
in MX structure analysis and extended them to one particular peculiar crystal
growth case - perfect twinning. It was shown that this distribution is related to
the non-central χ2 distribution. One of the future version of the MX optimisation
software - refmac [13] will use a more general form of this distribution.

It was also demonstrated that the most popular reliability index - Rfactor is very
poor quality indicator and can give misleading results. It is important to search
and find more robust reliability indices. The best available quality indicator is
the estimated covariance matrix of the derived models. However for very large
systems that is case for MX, its calculation requires prohibitively large computing
resources. Moreover the results depend on the likelihood functions used which
may be a challenging problem by itself for general case. Finding an objective
reliability index for model comparison is an outstanding open question of MX
structure analysis.

Here only very simple cases were considered. The main reason for this was
that we wanted to demonstrate that even in very simple cases Rfactor can give
misleading results. Full analysis would account for combination of many different
situations. For example some of the complicating circumstances that need to be
accounted for in crystal structure analysis are:
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1) Strictly speaking atoms are not uniformly distributed over all unit cell. Pro-
teins are usually compact and their atoms occupy only a region (typically 50%) of
the unit cell. As a result even for unrelated single crystals Rfactor-s may be lower
than 0.58 and behaviour of reliability indices may be different. Moreover by their
nature atoms in molecules are bonded with each other and therefore assumption
of independent atoms is a gross simplification.

2) Distribution of differences between two crystals may not be Gaussian. For
example it is often the case that one part of the crystal is better defined than
other parts of the crystal resulting in mixture of wildly different distributions for
differences between atomic positions.

3) With or without twinning there may be other crystal growth peculiarities.
A well known example is a so-called pseudo translation. It means that for every
atom with position x in the crystal there is an atom with position x + T + ∆x.
This phenomenon has a dramatic effect on the distribution of the structure factors.
For instance when T is a rational fraction of the crystal period (crystal transla-
tion) then the distribution of the structure factors will be multimodal and special
treatment is needed to deal with them. Usually the effect of pseudo translation is
opposite to that of twinning: Rfactors tends to become larger than that for standard
single crystal case.

4) In many cases macromolecules have their internal symmetry and it may hap-
pen that this symmetry is very close to the symmetry operator causing twinning.
In these cases assumption of independence of intensities with different Miller in-
dices may not be true. For these cases usually differences between Rfactor-s shown
above are not that dramatic.

4) Usually during the model building, part of the atoms are missing and that has
an effect in the second central moment - covariance matrix. The effect of missing
atoms for single crystal cases was analysed by Srinavasan and Partasarathy [19].

Even with all these caveats in mind it is clear that Rfactor is very poor model
quality indicator and there is an urgent need to improve the situation. In future
this problem will be addressed.

This work would be impossible without support by Wellcome Trust University
Research Fellowship.
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[1] PD Adams, PV Afonine, G Bunkóczi, VB Chen, IW Davis, N Echols, JJ Headd, L-W
Hung, GJ Kapral, RW Grosse-Kunstleve, AJ McCoy, NW Moriarty, R Oeffner, RJ Read,
DC Richardson, JS Richardson, TC Terwilliger, and PH Zwart. PHENIX: a comprehensive
Python-based system for macromolecular structure solution. Acta Crystallographica Section
D, 66(2):213–221, 2010.

[2] HM Berman, T Battistuz, TN Bhat, WF Bluhm, PE Bourne, K Burkhardt, Z Feng,
GL Gilliland, L Iype, S Jain, P Fagan, J Marvin, D Padilla, V Ravichandran, B Schnei-
der, N Thanki, H Weissig, JD Westbrook, and C Zardecki. The Protein Data Bank. Acta
Crystallographica Section D, 58(6 Part 1):899–907, 2002.



SOME PROPERTIES OF CRYSTALLOGRAPHIC RELIABILITY INDEX - Rfactor: EFFECTO OF TWINNING15

[3] E Blanc, P Roversi, C Vonrhein, C Flensburg, SM Lea, and G Bricogne. Refinement of se-
verely incomplete structures with maximum likelihood in buster-tnt. Acta Crystallographica
Section D, 60:2210–2221, 2004.

[4] G Bricogne. Bayesian statistical viewpoint on structure determination: Basic concepts and
examples. Methods in Enzymology, 276:361–423, 1997.

[5] A.T. Brunger. Simulated annealing in crystallography. Annual Reviews in Physical Chemem-
istry, 42:197–223, 1991.

[6] VB Chen, W. B Arendall-III, JJ Headd, DA Keedy, RM Immormino, GJ Kapral, LW Mur-
ray, JS Richardson, and DC Richardson. MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallographica Section D, 66:12–21, 2010.

[7] EJ Dodson, GJ Davies, VS Lamzin, GN Murshudov, and Wilson KS. Validation tools:
can they indicate the information content of macromolecular crystal structures? Structure,
6(6):685–690, 1998.

[8] T Hahn, editor. International Tables for Crystallography. Volume A: Space-group symmetry.
Wiley, 2006.

[9] TJ Hastie and R J Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.
[10] AA Lebedev, AA Vagin, and GN Murshudov. Intensity statistics in twinned crystals with

examples from the PDB. Acta Crystallographica Section D, 62:83–95, 2006.
[11] F Long, AA Vagin, P Young, and GN Murshudov. BALBES: a molecular-replacement

pipeline. Acta Crystallographica Section D, 64:125–132, 2008.
[12] V. Luzzati. Traitement statistique des erreurs dans la determination des structures

cristallines. Acta Crystallographica, 5(6):802–810, 1952.
[13] GN Murshudov, AA Vagin, and EJ Dodson. Refinement of Macromolecular Structures by

the Maximum-Likelihood Method. Acta Crystallographica Section D, 53(3):240–255, 1997.
[14] R Development Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2010.
[15] RJ Read. Structure-factor probabilities for related structures. Acta Crystallographica Section

A, 46(11):900–912, 1990.
[16] D. C. Rees. The influence of twinning by merohedry on intensity statistics. Acta Crystallo-

graphica Section A, 36:578–581, 1980.
[17] SO Rice. Mathematical analysis of random noise. Bell System Technical Journal, 24:46–156,

1945.
[18] GM Sheldrick. A short history of SHELX. Acta Crystallographica Section A, 64(1):112–122,

2008.
[19] R Srinavasan and Parthasarathy. Some Statistical Applications in X-Ray Crystallography.

Pergamon Press, 1976.
[20] A Stuart, K Ord, and S Arnold. Kendall’s Advanced Theory of Statistics, Volume 2A:

Classical Inference. Wiley, 2009.
[21] BK Vainshtein. Modern Crystallography, Vol. 1. Fundamentals of Crystals. Symmetry, and

Methods of Structural Crystallography. Springer-Verlag, Berlin, 1995.
[22] G. Vriend. What if: A molecular modeling and drug design program. J. Mol. Graph.,

8(1):52–56, 1990.
[23] T. O. Yeates. Simple statistics for intensity data from twinned specimens. Acta Crystallo-

graphica Section A, 44:142–144, 1988.


