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ABSTRACT

sgTarget (http://www.ysbl.york.ac.uk/sgTarget) is a
web-based resource to aid the selection and priori-
tization of candidate proteins for structure deter-
mination. The system annotates user submitted
gene or protein sequences, identifying sequence
families with no homologues of known structure,
and characterizing each protein according to a range
of physicochemical properties that may affect its
expression, solubility and likelihood to crystallize.
Summaries of these analyses are available for indi-
vidual sequences, as well as whole datasets. This
type of analysis enables structural biologists to iter-
atively select targets from their genomic sequences
of interest and according to their research needs. All
sequence datasets submitted to sgTarget are avail-
able for users to select and rank using their choice
of criteria. sgTarget was developed to support indi-
vidual laboratories collaborating in structural and
functional genomics projects and should be valuable
to structural biologists wishing to employ the wealth
of available genome sequences in their structural
quests.

INTRODUCTION

The first step in any structure determination project is to select
the appropriate molecule for study. Selection strategies vary
according to the scientific context and aims of the project. In
structural genomics, which aims to determine the structure of
all important bio-molecules, the large number of potential
candidates complicates the selection process. It is therefore
important to identify the molecules for which a structure
(normally of a protein) will provide the highest new informa-
tion content and, where possible, quantify measures of how

tractable each molecule is for structure determination (1,2).
Evolutionary constraints can be used to identify proteins that
may adopt similar conformations to known protein structures.
For these proteins, modeling approaches may provide
sufficient information to understand structure and mechanism.
Certain sets of protein characteristics can be inferred from its
sequence and employed in the identification of proteins that
may pose problems during the various stages of structure
determination. For example, fibrous domains can frustrate
single crystal formation protocols and may frequently be
identified by examining the protein’s amino acid sequence
(e.g. certain coiled coils).

Structural biology groups wishing to select and prioritize
targets from raw sequence data may currently use genomic
annotation servers, such as PEDANT (3) or 3D-Genomics
(4). These automated services contain gene and protein
annotations for a number of completed genomes. Although
they detail annotations of relevance to the selection pro-
cedure no user accessible mechanism exists for generating
target lists.

sgTarget was specifically designed to enable structural
biologists to submit their sequence of interest and to select
and rank targets according to their choice of criteria. A
simple web interface can be used to generate and download
target lists that may be iteratively refined by users. The
resource was developed to assist individual laboratories
participating in structural and functional genomics consorti-
ums, as necessitated by our laboratory’s involvement in the
Structural Proteomics IN Europe (SPINE) consortium (http://
www.spineurope.org/) and the Plasmodium Functional
Genomics Initiative (http://www.sanger.ac.uk/PostGenomics/
plasmodium/).

THE sgTarget ANNOTATION PIPELINE

A sequence annotation pipeline forms the core of the resource.
This carries out the determination and prediction of properties
and relationships that can be used in the selection of suitable

*To whom correspondence should be addressed. Tel: +44 1904 328267; Fax: +44 1904 328266; Email: rod@ysbl.york.ac.uk

Present addresses:

Ana P. C. Rodrigues, Burnham Institute for Medical Research, La Jolla CA 92037, USA
Barry J. Grant, Department of Chemistry & Biochemistry, University of California San Diego, La Jolla CA 92037, USA

© The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org



W226

targets. The pipeline consists of a set of bioinformatics
methods that were selected and incorporated into the
resource’s framework, as follows:

e Methods to predict protein fold, function and prevalence.
These help to identify targets, such as proteins for which
fold predictions cannot yet be established, those with
unknown functions, or ORFan proteins.

o Assessment of known protein expression and crystallization
issues. Nucleotide sequence based calculations deter-
mine the encoding gene’s GC content, codon usage and its
compatibility with that of the host expression system (the
Codon Adaptation Index). These metrics can highlight
potential problems for protein expression. Similarly,
sequence based prediction of protein instability, solubility
and half-life can identify issues for high throughput structure
determination.

e Assessment of known protein structure issues. Protein
sequence based calculations predict the locations of intrinsi-
cally disordered, fibrous or transmembrane regions. The
presence of these features can pose challenges for structure
determination.

The majority of protocols employed by the annotation
pipeline use established bioinformatics methods and databases
(listed in Table 1). A novel procedure for the identification of
intrinsically disordered regions was developed (5) and is
described briefly below. In addition, tailored thresholds
were established for GC content (between 26.9 to 66.8%
for the expression host Escherichia coli), Codon Adaptation
Index (above 0.084 for expression in E.coli, and above 0.357
for high levels of expression) and E-value cutoffs to assess
the structural significance of BLAST alignments (two cutoffs
are employed by the resource: 2.07 x 10!, a conservative
threshold and 2.15 X 1074, a ‘natural’ threshold with a false
positive rate of 0.2%).

Identification of intrinsically disordered regions

Intrinsically disordered domains can cause a multitude of
adverse effects in structural determination studies, including
purification difficulties due to hypersensitivity to protease
digestion, missing electron density due to incoherent X-ray
scattering, hindered crystallization, extreme broadening of
side chain NMR peaks and lack of chemical shift dispersion
of NMR backbone data. Some of these segments may become
ordered upon interaction with binding partners to perform
specific functions (6). Their structural characterization
would, however, be difficult even if prior knowledge of the
required cofactors was available.

The annotation pipeline employs the charge-hydrophobicity
phase-space boundary of Uversky et al. (7), complemented
by the putative lower bound complexity threshold of
Romero and colleagues (8), to predict regions of intrinsic
disorder. The low-complexity detection software SEG isolates
subsequences with high or low-complexity on the basis of
information content (9). In sgTarget, SEG is employed to
detect any subsequences of at least 45 residues and a
complexity value lower than 2.90. Such regions are annotated
as probable non-globular protein stretches. For the remaining
subsequences the mean hydrophobicity [the sum of the
normalized hydrophobicities from (10) divided by the
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Table 1. Software, databases and selected protocols employed in sgTarget’s

annotation pipeline

Software Application

CodonW* Calculate the relative conformance of a gene to
an organism’s genome (the Codon Adaptation
Index)

BLAST (18) Perform local protein sequence similarity searches

InterProScan (19)

SEG (9)

TMHMM (21)

Database
PDB SEQRES (22)

InterPro (23)

GO (24)
NRDB

b
Taxonomy

Protocol
Instability
index (25)

Estimate half-life
using the
N-end rule (26)

Wilkinson—Harrison
solubility index
(27,28)

against PDB and NRDB sequences

Run sequence comparison methods required to
search the InterPro database (as well as
NCOILS (20) to identify coiled-coil domains)

Detect and isolate subsequences with high or
low-complexity

Predict the location and topology of protein
transmembrane regions

Description

Protein sequences derived from the SEQRES card
of PDB files

Integrated collection of the protein domain family
databases (Pfam, PRINTS, ProDom, PROSITE,
SMART, TIGRFAMs and PANTHER)

Function ontology database with mappings to
InterPro

Collection of protein sequence databases (PIR,
SWISS-PROT, TrEMBL and PDB SEQRES)

Taxonomical classification of organisms
cross-referenced by NRDB

Description & Application

The instability index is a length-scaled measure of
the occurrence of all dipeptides in a protein
sequence. Guruprasad and colleagues found a
correlation between this measure and protein
stability: in general, stable proteins have
instability indices smaller than 40.

Estimates of in vivo half-life for proteolysis of
proteins in prokaryotes can be made by the
N-end rule. This considers the presence of a
destabilizing N-terminal residue that provides
an N-degron degradation signal.

The revised Wilkinson—Harrison statistical
solubility model depends on two parameters:
the fraction of residues with a high index for
forming turns and the approximate average
charge of the protein in vivo. This model has
been shown to be useful in the selection of
proteins with high solubility.

“CodonW (http://codonw.sourceforge.net/).
®Taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html).

number of residues] and the mean net charge at pH 7.0 are
calculated, and used in Equation 1, to predict if a subsequence
is likely to be intrinsically disordered. Uversky and colleagues
found that disordered proteins have low overall hydrophobi-
city and high net charge, always falling below the boundary:

(R) + 1.151

() =578

where (H) is the mean hydrophobicity and (R) is the mean net
charge (7,11).

The performance of sgTarget’s disorder prediction method
on the CASP5 disorder benchmark was evaluated (12).
sgTarget’s disorder predictions for those targets that are
least related to a protein with known structure, achieved an
accuracy of 0.77 (where accuracy is the arithmetic mean of
sensitivity and specificity measured on a per residue basis),
which compares favorably to previously reported methods.
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Hence, the method is suitable to analyze datasets where there
may be many new folds, such as the complete genomes that
serve as input to the resource.

In summary, the annotation methods employed by
sgTarget allow the identification and prediction of a wide
range of properties for each putative target. These enable
users to filter and prioritize proteins and genes, generating
lists of targets to suit diverse requirements.

THE sgTarget SERVER

A web-based interface has been developed to interact with the
sequence annotation pipeline. This allows users to analyze
genomic sequences of interest by submitting them to the
server, interact with the resulting data by browsing or search-
ing and to select and prioritize targets for structural determina-
tion according to their choice of criteria. The interface is
available at http://www.ysbl.york.ac.uk/sgTarget/ and its
functionality is divided into three main pages: Load, View
and Target.

Load

The Load page allows users to submit their sequences
of interest through an anonymous interface. Requests are

O0n
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submitted to the annotation pipeline and processed sequen-
tially. Annotations for an average bacterial chromosome
(~5 Mb or ~4000 protein coding genes) take ~24 h to
complete. Users can choose to be notified of progress by
e-mail on initiation and on completion of annotations. Depen-
ding on the level and nature of user requests, there may need to
be some prioritization and arbitration on the order and choice
of which organisms or datasets are annotated.

View

The View page allows users to analyze the sequence annota-
tions performed by the resource. Users can browse through the
annotations for a dataset using the Browse function. Here
detailed annotations are available for individual proteins,
and global synopses are available for the dataset’s character-
istics. Browsing the data by protein enables users to inves-
tigate the results of all the calculations obtained through the
annotation pipeline for a particular gene/protein sequence.
This includes gene information, such as GC content and
codon usage, protein information, such as function, structure
and prevalence predictions, and information on the suitability
of the target for structural studies, such as the number of
transmembrane, disordered and coiled-coil regions, and
the protein’s physicochemical properties. Browsing the data

! E} @ @ # http:/ /www.ysbl.york.ac.uk/sgTarget/target.htmi

STRUCTURAL GENOMICS RESOURCE
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TARGET ©

Choose one or more data sets to target
from the list below.
here.

Available data sets

Bacillus anthracis: whole genome G On
Human herpesvirus 4: whole gencme
Mycobacterium tuberculosis: whole genome | |
Mycoplasma genitalium: whole genome
Plasmodium falciparum: mitochondrion
Plasmodium falciparum: chromosome 1
Plasmodium falciparum: chromoseme 2
Plasmodium falciparum: chromosome 3
Plasmodium falciparum: chromoseme 4
Plasmodium falciparum: chromoseme 5
Plasmodium falciparum: chromoseme 6 al
Plasmodium falciparum: chromoseme 7 ‘

= on

For multiple data sets use Ctri-[click] (PC)
or Apple-[click] (Mac).

Homologue in nrdb (prevalence)

If the sequence you need is not listed
above, you can load it for annotation.

VIEwW TARGET HELP

SELECT

Choose your selection criteria using this form. Click here for help with
choosing selection criteria and information on the default values provided

1. Gene properties:

@®on Qoff

2. Protein annotations:
Homologue in PDB (fold prediction)

Homologue in InterPro (function prediction}

sGTARGET

ok

26.90 < GC content (%)< 66.80
0.08 < Codon Adaptation Index < 1.00
< No. of Introns < 0

(O Yes (*)No () Don't care

e e
BLAST E-value Threshold | 2.07E-11 (conservative) | 3

O Yes () No (*) Don't care

GO Molecular Function | All 3
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BLAST E-value Threshold | 1.00E-10 (conservative) =+

3. Protein properties:
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=
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< Instability Index < 40
I < Half-life in E. coli (h) <
] < Molecular Weight (kDa) <
< Length (aa no.) < .
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Figure 1. Target page with Select function activated. The menu area (on the left) allows users to choose one or more sequence datasets to target. The work area (on the
right) allows users to specify selection criteria. In this example, the Mycoplasma genitalium genome has been chosen for targeting. The selection criteria specify that
genes must have a GC content and CAlI that is optimal for E.coli, and proteins have no homologues with known structure, are likely to be stable, viable in E.coli for at
least 2 h, have at most one transmembrane region, and no fibrous or disordered regions (sgTarget’s default selection criteria). When users click the OK button they are
presented with the Rank function, and asked to choose how the target list should be prioritized and displayed (shown in Figure 2).



w228

e a @

Nucleic Acids Research, 2006, Vol. 34, Web Server issue

sgTarget - Structural Genomics Resource: TARGET ‘

4 > @ A A]@ # http:/ /www.ysbl.york.ac.uk/sgTarget/target.ntml

a(Q~ Google |

STRUCTURAL GENOMICS RESOURCE

HOME LOAD VIEW
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Selected 49 targets of 484
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Sequence: Mycoplasma genitalium,
whole genome

No homologue in PDB (E-value
threshold 2.07E-11)

display
26.90 < GC content < 66.80 g
0.08 < CAI < 1.00

No. of introns = 0

Instability Index < 40
Half-life in E. coli > 2 hours

Number of Transmembrane regions
<1

Number of Fibrous regions = 0

Number of Disordered regions = 0
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0O0.

TARGET  HELP

RANK

Choose how the selected targets should be ranked and/or displayed using this form.

To obtain your target list, click:
The HTML button for Web page display, or
The TEXT button for a tabbed text file.

Parameter ranking & display:

GC Content

Codon Adaptation Index

No. of Introns

Instability Index

Half-life in E.coli

Molecular Weight

Length

GRand AVerage hydropathY
Isoelectric Point

Coverage by nrdb Homologues
No. of Transmembrane Regions
Span of Transmembrane Regions
No. of Fibrous Regions

Span of Fibrous Regions

No. of Disordered Regions

Span of Disordered Regions

(HTML) (TExT)

order & priority*
(® Increasing () Decreasing
@ Increasing () Decreasing
(®) Increasing () Decreasing

O Increasing (*) Decreasing
(O Increasing (*) Decreasing
@ Increasing () Decreasing
() Increasing () Decreasing
@® Increasing () Decreasing
(®) Increasing () Decreasing
O Increasing (*) Decreasing
() Increasing () Decreasing
@ Increasing () Decreasing
&) Increasing () Decreasing
® Increasing () Decreasing

(® Increasing () Decreasing

TEEEFEEEIEEEEEEEE]

® Increasing () Decreasing

Figure 2. Target page with Rank function activated. The menu area (on the left) shows a summary of the results returned by the Select function. The work area
(on the right) allows users to specify which data to display for the selected targets, and how to rank those targets by specifying the priority of each annotation. Users can
choose to view the prioritized target list as a Web page (by clicking the HTML button) or, alternatively, as a tabbed text file (by clicking the TEXT button). In this case,
49 targets were selected with the criteria specified in Figure 1. The target list is to be ranked with decreasing coverage by NRDB database (i.e. proteins with more of
their length annotated as similar to a protein in the NRDB database have higher priority) and a number of protein physicochemical properties are to be displayed along
with the default attributes (off the screen in this screenshot) (see Figure 3 for resulting page).

by characteristic enables users to investigate the results of a
particular set of calculations for that dataset. This includes
global statistics for gene expression predictions, structural
and functional annotations, prevalence assignments, trans-
membrane and non-globular regions predictions, as well as
physicochemical properties. Within the View page, users
can also search each subset using the Search function. It
allows users to find proteins using the resource’s own identi-
fier, as well as other identifiers (GenBank accession no.) and
names (sequencing center naming), as provided by the
sequence input files.

Target

The Target page enables users to select and prioritize targets.
The Select function is used to specify the datasets to target,
which gene and protein properties the targets should possess,
and what parameters and thresholds should be employed in the
selection (Figure 1). All annotations established through the
annotation pipeline can be employed as selection parameters.
Upon selecting targets, users are presented with the Rank
function, which enables them to perform target prioritization
(Figure 2). This function also allows users to choose the format
and layout of the target list, which is finally presented to them
(Figure 3).

APPLICATION

sgTarget has underpinned the selection of targets for our labor-
atory’s collaboration in the Plasmodium Functional Genomics
Initiative. The resource was employed to annotate the genome
of Plasmodium falciparum, the organism that causes the most
fatal form of human malaria (Figure 4). This enabled the
generation of a target list by refining the selection choices
to consider parameters selected by researchers in the group.
The initial list of 73 targets consists of malaria proteins
encoded by single exon genes with GC contents higher than
30%, no transmembrane regions and no long non-globular
hydrophilic regions. GC content and intron number are the
most selective of the parameters, together reducing the number
of possible targets by 98%. These selection criteria were cho-
sen to identify proteins likely to express in E.coli, and initial
results obtained by the group indicate that the target list has
been successful on those terms (13). Thus far, the group have
initiated work on 10 of these targets, successfully cloned and
expressed 8, purified 6, of which 1 is in crystallization trials
[and has also been shown to be crucial for the parasite’s
invasion of human red blood cells, (14)] and 3 have already
yielded high-resolution structures (15,16) and Boucher, I,
Brzozowski, A.M., Brannigan, J.A., Schnick, C., Smith, D.,
Kyes, S. and Wilkinson, A.J., manuscript in preparation.
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Figure 3. Target page showing a target list. The selected targets are ranked according to the order and priority specified for the different annotations, and a table of
prioritized targets is built using the annotations that were chosen for display. In this case, a list of 49 targets (selected from M.genitalium’s genome with the criteria
specified in Figure 1) was ranked by decreasing coverage by NRDB database proteins, and a table constructed showing the target’s identifier (in sgTarget), accession
number, name, molecular weight, length, GRAVY score, isoelectric point, coverage by NRDB database proteins (including the span of the alignments on the target
and the top taxonomic group which encompasses all reported alignments) and function annotation (the top InterPro hit and its GO high-level molecular function)
(as specified in Figure 2).

transmembrane low-confidence

high-confidence

3D
(1055)

annotation

ORFans
Prokaryotic

revalence 2
P P. falciparum

intractable (311)
(3714)

function Plasmodia
(187) Apicomplexan
Eukaryotic
not classified
GO
fibrous

disordered

Figure 4. P falciparum annotation wheel, with an emphasis on structural annotation. Annotations are displayed anti-clockwise as follows: A total of 1055 proteins
have structural annotations, 691 high-confidence and 364 low-confidence (PDB SEQRES, release 05/2002); Of the remaining proteins, 3714 are likely to be
intractable: 1475 have transmembrane regions, a further 2131 have disordered regions and the other 108 have fibrous regions; For the remainder of the proteome,
187 proteins have function annotations, although only 97 of these are classified by GO; Most other proteins are found in other organisms (295), except for
16 ORFan proteins.
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In addition, sgTarget has been employed to select a set of
Bacillus anthracis target proteins for the SPINE consortium.
Here, the resource was used in tandem with the bioinformatics
tools available at the Oxford Protein Production Facility
(http://www.oppf.ox.ac.uk/bioinformatics.php) to select a set
of proteins of desirable molecular weight (20 to 55 kDa),
which are likely to be soluble (insolubility probability smaller
than 0.7) (17).

We encourage structural biologists to submit sequence
datasets to sgTarget and contact us regarding suggestions
on software and databases for the annotation pipeline, the
annotation views provided by sgTarget and the functionality
of the Target page.
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