C++

C++ for Fortran programmers

Kevin Cowtan
cowtan@ysbl.york.ac.uk

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Part 0: C++ Syntax:
Basics

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* C++ is a compiled programming language, like
Fortran.

* It contains a range of very similar data types,
control statements, and input/output facilites.

* It also includes a range of modern programming
features, in particular:

— Dynamic memory allocation (F90)
— Namespaces
- Object orientation

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

| nt eger | Int I C++
real n, s, t float n, s, t;
n =3.0 n = 3.0;
s =1.0 s = 1.0;
10 continue | oop:
t = s t = s;
s = (t+n/t)/ 2.0 s = (t+n/t)/2.0;
I f (abs(s-t).lt.0.01) goto 10 | f (abs(s-t)<0.01) goto | oop;
wite (*,*)s std::cout << s;

* Basic concepts (variables etc.) very similar:

— Types have different names.
- In C++, statements separated by ';', not newline.
- 'goto’ is labelled. (But this is the last time you'll see it!)

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

oNQ

real mat (3, 3),x(3),y(3)
| nt eger i, |

initialise mat
Initialise x

doi =1,3
y(i) = 0.0
doj =1,3
y(i) =y(i) + mat(i,])*x(])
enddo
enddo

float mat[3][3],x[3],y[3];
int i,j;

[/ 1nitialise nat
[/ ITnitialise X

C++

for (1=0; 1<3; 1++) {

y[i] = 0.0;

for (j=0; j<8; j++) {

}y[i] = y[i] +mat[i][j]*x[]];
}

— C/C++ arrays are different:
* Indicesin'[]
* Indices start at zero.

* Only 1-d, but for multidimensional use an array of arrays!

— Loop syntax different, loop
— Comments use //

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

body enclosed in '{ }.

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Built in types:

r eal
doubl e preci sion

| Nt eger

conpl ex

| ogi cal

character, character|()

fl oat C++

doubl e
| nt

char, char]|]

butalso std::string
st d: : conpl ex

bool

The built in types are very similar.

But in addition to the built in types, C++ has a library called STL
of much richer extensions: std: : *,

for example strings, complex numbers, resizable arrays.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Built in types: One big difference:
— In C++ (not C), variables may be declared at any point in
a function. It is normal not to declare a variable until you
are about to use it. (Improves readability, saves memory)
— Variables stay in scope until the end of the block
('{...}) inwhich they were declared. This can be a
function, or the body of a loop/conditional, or just a self

contained group of statements. _ _
Int I = 9;
I nt | ;
j =1; [/lok

Note also: we can initialise on declaration. I =], /lerror

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: 'if’

C++
1f (...) statenent 1f (...) statenent;
1f (...) then 1f (...) statenent;

statenents el se st at enent ;
el se

statenent s
endi f

Conditionals are similar, but in C/C++, only one statement
(ending with ;') follows the condition. Hence no 'endif'.

How do we handle conditions containing multiple statements?
Wherever you can use a single statement, you can also

use a list of statements enclosed in '{ }".
Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: 'if’

C++
'f (1.1t.0) 1 =0 1f (i <0) = 0
If (1.gt.6) then if (i >6) {
1 =0 | = 0;
] =1] = 1
endi f }
Note also that the conditions are different:
Beware: t. <
= for assignment - gt. |>
. . he. =
b == for comparison eq. ——
You will get this wrong!
Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: 'for

do i=1,n for (i=1;i<=n;i++) C++
st at enent st at enent ;

enddo

do I =1,n for (1=1;1<=n;I++) {
st at enent st at enent ;
st at enent st at enent ;

enddo }

Basic loop syntax very different, but it follows the same rules
as 'if' for the contents:
The loop contains one statement, which may be

* a simple statement followed by ';' or

* a compound statement in '{ }".

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: 'for

Do this between each iteration of the loop
Do the loop as long as this is true
Do this before the ,oop starts $|

\/ \/
for (1 =1; 1 <=n; |++)
Note: 'I ++'
IS shorthand for I += 1',
which is shorthand for I =1 + 1'
In C/C++ we usually count from zero, hence:
for (1 =0; 1 <n; I++)

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: other loops

10 if (!'cond) goto 20 while (condition) {
st at enent
goto 10 }

20 conti nue

do {
10 st at ement .
If (cond) goto 10 } while (condition)

Note:
'do’ and 'while' loops also available.
Can use for single statements or blocks.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Control statements: 'break’

doi =0,n-1 for (1=0; 1<n; 1++) {
if.(err) goto 20 if.(err) br eak;

enddo b

20 contli nue

A 'br eak’' statement breaks out of the nearest loop
(for/do/while) above it.
(It ignores any intervening non-loop blocks).

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Operators and functions:

— Most operators are the same.

— Especially:
* Parentheses
* Precendence.
* Trig and log functions.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

+ +
/ /
f**g pow(X, y)
mod(1,]) | %
nod(f,g) = nod(f, Q)
At <
.le. <=
. gt. >
. ge. >=
. he. =
. eq. ==
. and. &&
. or. | |
. hot . !
abs(1) abs(1)
abs(f) fabs(f)
Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Arrays:

— C++ arrays indexed from O

— Declare and index with '[T

— Multidimensional arrays are arrays of arrays.

* But:

— In C++, we only use arrays for special purposes where
we know size is fixed. Otherwise we use more flexible

objects.

| nt eger 1(3)
real m(10, 10)
character c(20)

1(3) =1i(1)
m1,1) = 1.0

Int 1[3];
float nf10][10];
char c[20];

1[2] =1[0];
mO0][0] = 1.0;

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Functions:

| nt eger function fact(n)
| nt eger n
| nt eger 1, |
j =1
doi = 2,n
J = *
enddo
fact = |
return
end

Int fact(int n)

o
int 1,];
] =1
for (1=2;1<=n;i++) {
NENEE
}
return j;
}

* Define argument types in the function definition.
* Enclose the body of the function in '{ }".

* Use 'r et ur n' to return result (if any).
* Arguments are copied — the function cannot change them
in the calling program (in general).

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Functions: (Subroutines)

Subroutine fact(n, m
| nteger n, m
| nt eger |
m=1
doi = 2,n
m=m?* |
enddo
return
end

void fact(int n, int& m
t

I nt 1 ;

m= 1;

for (1=2;1<=n;1++) {

m=m?=* |;

}

}

* This is an ugly example!

* |f there is no return value, return type is 'voi d'.
* You can pass arguments to be modified by adding

'&' after the type.

l.e. Don't copy the value, just pass a reference to it.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Functions: (Subroutines)

void fact(int n, Iint& m

void fact(const int&n, int& m

* We can pass a reference even when we don't want to
return something through it.

* The keyword ‘const’ indicates it will not be changed.

* We passing a complex object (rather than a variable),
passing a ‘const’ reference saves a lot of copying.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++
* Input/Output:

| Nt eger X
character s(20)

wite (*,*)s," scored ", X
| Nt X;
char s[20];
std: :cout << s << " scored " << Xx;

®*std::cout does free format output.
®*std::cin (using >>') does free format input.
* Use '#i ncl ude <i ostrean®'at the start of the program.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk

Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Formatted Input/Output:

| nt eger X
character s(20)
wite (*,10)s, X
10 format (a20," scored ",14)

| Nt X;
char s[20];
printf("%0c scored %l \n", Xx,s);

* '\ n' means 'new line'. You can put it in any string.
* Use '#i ncl ude <st di o>'at the start of the program.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Main program:
pl‘ ogr am rrypr 0]0

st op
end

Int main(1nt argc, char** argv) {

}

* In C/C++, we write a function called 'nai n'.
* It receives parameters from the OS, which are the number
of command line arguments, and the array of arguments.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Main program:

#1 ncl ude <i ostreanp

Int main(Int argv, char** argc) {
for (int i =0; i < argv; i++)
std::cout << argc[i] << "\n";

* We won't go into the 'char * *' notation, but it translates
roughly as 'char argc[][]".

* This program prints out a list of all the command line
arguments.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Putting it all together:

— Write a program which makes a table of numbers with
their factorials.

— Just add one more technique: since we can define
variables anywhere, we can define a loop variable in the
'for' statement.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Putting it all together:

#1 ncl ude <i ostreanp

Int fact(int n)

{
Iint | = 1;
for (int i=2; i<=n; i++)
j = * i
return j;
}

Int main(Int argc, char** argv) {
for (int i=1;, i<=10; |++)

<< fact(i) << "\n";

}

std::cout << | << " factorial 1s "

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Other features:

* C/C++ have other features, which we will avoid
using:

— Pointers: Refer to a variable by its address in memory.
e int *x; float *y;

— Memory allocation:

* C-style (malloc/free)
* C++-style (new/delete)

* C++ is a huge language, with several ways of doing
anything. We are focusing on a small, well defined,
modern subset, based on the standard library STL.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Part 1: C++ Syntax:
Advanced concepts

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Namespaces:

* Problem: if we include many libraries in our
program, we will eventually get name collisions.

* One solution is to include the library name in every

function. Example:

- Otz read file("fil enane")
- MMDB read file("fil enane")
- Jpeg read file("fil enane")

* But it is tedious to retype names when we don't
need to (e.g. When a library calls itself).

* Solution: namespaces

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Namespaces:

* We can hide functions, data, types etc. inside a
namespace, to avoid name clashes.

* They can then have obvious short names, with
which they refer to one another.

* Anything else outside the namespace must add the
name of the namespace before the function (or
whatever) name.

— But if we use something really frequently, we can declare
the whole namespace, or individual members, to be
available.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Namespaces:

nanespace ccp4 { // begi n nanespace

int funcl(int n) {
return 2*n;

}
voi d func2() {
int 1 = funcl(6); [l 12
}
} [/ end of nanespace

int funcl(int n) {

return -n;
}
void main() {
int 11 = funcl(6); /[l -6
int 12 = ccpd::funcl(6); [/ 12
}

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Namespaces:

namespace ccp4 { // begi n nanespace

Int funcl(int n) {
return 2*n;

}
} /'l end of nanmespace
usi ng nanespace ccp4, /[l use this
usi ng ccp4::funcl; /[l or this

void main() {
Iint 11 = funcl(6); [l 12

}

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Overloading

* Overloading allows us to define several functions
with the same name.

* The functions differ only in what arguments they
accept. The function to be run is chosen by the
compiler on the basis of what arguments are
provided.

— Note: you cannot overload on the basis of return value!

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Overloading
* e.g. Three ‘minimum’ functions:

[/ mninmum of two integers

int mn(int x, inty) {
If (X <y) return x;
el se return vy;

}

[/ mnimum of two floats

float mn(float x, float y) {
If (X <y) return x;
el se return vy,

}

[/ mninmum of three floats

float mn(float x, float y, float z) {
If (X <y && X <z) return Xx;
elseif (y <z) return vy,
el se return z;

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Overloading

* Note: we will also encounter something called
‘operator overloading’. This allows use to redefine
how operators like ‘+ work under special cases.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Looking forward:
C++ has some better ways of doing even simple,

non-object oriented tasks.

— std::string - an advanced string class.
— std::vector<> - a resizeable array class.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Looking forward:

#1 ncl ude <i ostreanp
#1 ncl ude <string>

std::string s = "hell 0o";
std::string t = s.substr(1, 3);
| nt p:sflnd("ell")'

std::cout << s << "\n" [/ hello
std::cout << s.Iength() << "\n"; [/ 5
std::cout <<t << "\n"; [ell
std::cout << p << "\n"; [l 1
* Strings have many useful methods.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Looking forward:

#1 ncl ude <i ostreanr
#1 ncl ude <vector>

std::vector<float> x(6),;

std::cout << x.size() << "\n"; [] 6
x[0] = 1.0;

X[5] = 3. 142;

X. append(2.718);

std::cout << x.size() << "\n"; [7
X.resize(1000);

std::cout << x.size() << "\n"; [/ 1000

® You can also insert into the middle and delete
from the middle of the array.
* If this is performance critical, use std::list<> instead.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Part 2: Object Orientation: practice

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Object orientation is a programming paradigm. lts aim
IS to allow the creation of more modular, reusable,
maintainable code.

It achieves this by many means, including:
— Allowing the code to better reflect the terms of the
problem.
— Separating interfaces (APIls) from implementations.
— Allowing existing implementations to be overridden or
extended.

— Allowing algorithms to be generic across many data
types, even unknown ones.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

We will follow the development of programing

language features stepwise to arrive at our first
objects.

Next, we will look at the ideas of object orientation in
a more general way.

Finally, we will bring these things together.

Starting point: data structures.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Most languages (except F77) allow us to define
new, more complex data types. In OO languages,
these are called 'classes’. (In C they are 'struct's).

* Aclass is a new type, which is added to the
language.

* We can declare classes just as we would declare a
variable of any built in type.

* A class may contain one or more 'member

variables' of any type — including other classes.
— And a whole lot more... later.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Example: A class for unit cell parameters.

class Cell {
publ i c:
doubl e a, b, c;
doubl e al pha, bet a, ganms,;

'
Cell cl1, c2; // nmake 2 cell objects
cl.a = 10. 0O;
cl.b = 15.0;
cl.c = 20.0:;

cl:alpha = cl.beta = cl.gamma = pi/2;

c2 =
c2. a 30. 0;
std::cout << c2.a << c2.b << c2.c; // 30 15 20

cl

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Example: A class for unit cell parameters.

class Cell {
publ i c:
doubl e a, b, c;
doubl e al pha, bet a, ganmms,;

i

* We define a new type, called 'Cell'.
(Begins with capital letter, by convention)

* It has 6 members (all double), which are publicly
accessible (see later).

* Note: at this stage it is not unlike a Fortran common
block. But, we can only have one instance of a
common block in a program, but we can have many

instances of a class.
Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Example: A class for unit cell parameters.

Cell cl1, c2; // nmake 2 cell objects

cl.a = 10. 0O;
cl.b = 15.0;
cl.c = 20.0;

cl.al pha = cl.beta = cl. gamma = pi/ 2;

* We create two 'objects’ of class 'Cel | . ¢1 and c2.
Just like making two int-s or float-s.

* We access the parameters of c1 by using the name of
the object, a dot, and then the name of the member.

* The other object, c2, is unaffected.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

* Example: A class for unit cell parameters.

c2 = cl
c2.a = 30.0;
std: :cout << c2.a << c2.b << c2.c; // 30 15 20

* We can copy all the members of c1 into c2 using a
simple assignment.

* We then change just one of the members.
cl is unaffected.

* Objects can also be passed to or from functions as
arguments or return values.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Terminology:
* An object is an instance of a class.
* A class defines the type of an object.

* A class contains members:

— Member variables. (members)
— Member functions. (methods)

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Member functions (methods):

* A member function is a function which is defined as
part of a class.

* It is used on an object of that class, and operates
on the member variables of that object and any
arguments passed to the function.

* The result of the function may be returned as a
return value, or may modify the member variables,
or both.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Member functions (methods):

class Cell {
publ i c:
doubl e a, b, c;
doubl e al pha, bet a, ganms,;

doubl e vol une() {
return a*b*c*sin(beta); // wong!
}

i

* The function 'vol une'is defined inside the class.

* We don't need to pass the cell parameters, because
they are already members of the class.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Member functions (methods):

3000
9000

std::cout << cl.volune(); // 10x15x20
std::cout << c2.volune(); // 30x15x20

* We call the member function by giving the name of the
object, a dot, the name of the function, and then any
arguments.

* We get a different result depending on which object we
use, because they have different parameters.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

* Once we have member functions, we can then
'hide' the member variables.

* Instead, we provide accessor functions to allow the
member variables to be read or modified.

* The result is a class which has a well defined
external interface which completely hides the
internal implementation. We can then change how
the class works internally without affecting the rest
of the program.

This is a huge benefit! Use it!

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class desian:
class Cell {
publ i c:
double a() { return al; } // accessors
double b() { return bl; }
double c() { return c1; }
doubl e al pha() { return al phal; }
doubl e beta() { return betal;, }
doubl e gamma() { return ganmal; }
doubl e vol une() {
return al*bl*cl*sin(betal); // wong!
}
private:
doubl e al, bl, cl, al phal, bet al, ganmal,
}s

* We make the member variables private.
* There is no performance cost - the compiler optimizes.

Kevin Cowtan. cowtan@ysbl.y

ork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

class Cell {
publ i c:
double a() const { return al; } // accessors

private:
doubl e al, bl, cl, al phal, bet al, ganmal,

}i

* Methods can be declared as ‘const’,
l.e. They don’t change the state of the object.
(The compiler will check this for us).

* Doing this for one accessor doesn’'t make much
difference, but if we do it everywhere then the
compiler can do a huge amount of checking for us.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

* Now that the members are private, how do we set
the contents of the object? 3 options...
— We can define a constructor.
— We can define 'set' accessors ('setters’).

— For simple cases where the representation is
unambiguous, we can return references to the members.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

class Cell {
publ i c:

Cel 1 () {}

Cel | (double a, double b, double c,
doubl e al pha, double beta, double gamma) {
al = a; bl =Db; cl = c;
al phal = al pha; betal = beta; gamml = ganms;

}

private:
doubl e al, bl, cl, al phal, bet al, ganmal,

};

* Constructor has same name as class.
* Also define null constructor, so we can create an object
without initialising it.
Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

[/ construct and initialise

Cell cl1(10.0, 15.0, 20.0, pi/2, pil2, pil2);
[/ construct uninitialised

Cell c2;

[/l construct on-the-fly and assign

c2 = Cell(30.0, 15.0, 20.0, pi/2, pi/l2, pil2);

* We can use the new constructor in two ways -
* On declaring the object.

* On the fly, to create a cell object in the middle of an
expression.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:

class Cell {
publ i c:
voi d set cell paraneters
(double a, double b, double c,
doubl e al pha, double beta, double gamma) {
al = a; bl =Db; cl = c;
al phal = al pha; betal = beta; gammal = gannsg;

}

voi d set _a(double a) {
al = a;

}

private:
doubl e al, bl, cl, al phal, bet al, ganmal,;

b

* 'Set' accessors may set one or many members.
* Can also perform calculations.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design:
- One last detail: Destructors

class Cell {
publ i c:
/| Constructor
Cell (double a, double b, double c, ...) {

}

[/ Destructor
~Cel | () {

}

* Called automatically when a class is destroyed.

* Clean up any memory allocation, i.e. Do not use!
Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Class design: Summary

* We can build up compound objects containing
collections of built-in data types and other objects.

* We can use these objects wherever we would use
a built-in type.

* The objects can also contain relevant functions for
manipulating the data.

* In the interests of maintaining a stable API, it is
best to only allow access to the members of the
object through accessor functions.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Part 3: Object Orientation: theory

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Object orientation:

* By making objects which describe the objects in our
problem domain, we achieve a better match
between the program and the problem.

* Interactions between objects in the real world
become methods of objects in the program.

* Even in completely abstract problems, we still have
a benefit: the abstraction of the API.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Object orientation:

* How do we chose objects? One approach:
— Write down a description of the problem, then underline
all the nouns.

— Simple things may become properties of objects (i.e.
Member variables).

— More complex things may become objects.
— Others are abstract or uninteresting or processes and will
be ignored or take other forms.
* e.g. Crystal, cell, space-group, coordinate, map,
density, FFT, likelihood.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Object Orientation concepts:

* Encapsulation:

— Hiding the details of data representation behind some
interface. (We've seen this already).

* |Inheritance:

— Allows us to customise existing classes to suite our
purposes.

* Polymorphism:
— Allows us to make methods and classes which will work
on any of a range of different data types.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Inheritance:
* Inheritance provides an efficient way to re-use

code.

- |If we want to make a new class which is similar to an
existing class, we can use ‘inheritance’ to do this without
touching the original class.

— The new class is called a ‘sub-class’ or ‘derived-class’. It
iInherits from its ‘super-class’, or ‘base-class’.

— The new class has all the members and methods of the
parent class, plus any more that are defined.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Inheritance:

* e.g. The unit cell class: a real example:
— Phil wants to use my Cell class, but he needs a different
orthogonalization convention in reciprocal space.
— S0 he makes a new class, Cell _cambridge, which
inherits from my Cell class.
— My class has a method which returns the reciprocal

orthogonalization matrix.
* Phil overrides this method with a new method of his own.
* He can also add completely new methods, and members.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Inheritance:
* e.g. The unit cell class: a real example:

class Cell {
publ i c:

Mat 33 mat _reci _orth() const { return ...

}
class Cell canbridge : public Cell {
publ i c:
Mat 33 mat _reci _orth() const { return ...
}

* The ‘derivation’ comes after the class name.
* Any changes are included in the class body.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Inheritance:

* Properly used, inheritance aids code re-use:

— Define ‘base classes’ which are generic.
— Derive more specific classes, have more details.

- e.g.

Cl ass Atom
{ double x,y, z,occ; };

Class Atom.isotropic : public Atom
{ double u_iso; };

Cl ass Atom ani sotropic : public Atom
{ double ull, u22,u33,ul2, ul3, u23; },;

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Inheritance:

* Properly used, inheritance aids code re-use:

— At first, spotting how to use inheritance can be tricky.

— One (inefficient) approach while learning:

* Write all the specific classes

(using cut and paste for any shared code).
* Look for any members and method code which can be shared.
* Implement a base class containing the common features.

— Even for experienced programmers, class design evolves
after the first implementation.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism:

* Polymorphism is the ability of classes, methods,
and functions to work on a range of different data
types, even types which did not exist when the
library was written.

* Two forms:
— Runtime polymorphism: You can use a derived class
wherever you can use its base class.

- Templates [C++/Java only]: You can write template
classes and functions which can take any type of data.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (runtime)

® e.g. Suppose our At omclass implements a method
‘density at xyz(Xx,Yy, z)’, for a stationary
atom.

— Atom.i sotropi c and At om ani sot r opi ¢ will
override this method with methods appropriate to atoms
with thermal motion.

— A method for calculating electron density might take a list
of atoms, not caring what type of atom is involved.

— A later developer may then add another atom type (e.g.
At om di sor der ed) with a clever method for calculating
density. The electron density calculation will still work!

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (runtime)
* Problems: there are (small) memory and

performance overheads:

— Therefore in C++, runtime polymorphism only occurs for
classes which have virtual methods, and then only those
methods of a class which are explicitly declared as
‘virtual’ (i.e. Can be overridden).

— Polymorphism only occurs when handling a reference (or
pointer) to a class which contains virtual methods.

* It's useful, but in C++, it has limitations.
— (Clipper uses it, but you don’t need to know any more.)

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)

* Templates are a second form of polymorphism,
implemented in C++, which has no performance or
memory overheads.

* Template polymorphism occurs at compile time.

* Template polymorphism works on any class (which
has the right sort of API), whether or not there is an
iInheritance relationship involved.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:aresize-able array of data of

some type.
— Incredibly useful: use it whenever you want an array
whose size isn’t absolutely immutable.
- Makes memory allocation (and therefore memory leaks)
obsolete.
— There are also a whole range of related types, e.g. Singly
and doubly linked lists, associative arrays, etc.

* Part of STL: the Standard Template Library.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)

® e.g.std::vector:

st d:
std::

I nt n
std::
std:

= 10;
vector<int> i;

:vector<float> f(6);
:vect or<double> d(n, 1.0);

vector<Cel | > c;

* The type of data comes in angle brackets <> after the
class name. This tells the compiler to compile a vector
for that type of member.

* The data type can be any built-in or user defined type or

class.

* We can optionally define initial size, and value.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:

/] get the current size
Int old size = d.size();

[l resize the |1 st
d.resize(20);

* The std::vector class has a method ‘size’ which returns
the current size of the list.

* The std::vector class has a method ‘resize’ which
changes the current size of the list.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:

[/ sumthe values in a |i st

doubl e sum = O;

for (int 1 =0; I <d.size(); 1++)
sum = sum + d[i];

* The std::vector class has a method which looks like
standard array subscription (i.e. overrides the bracket
operator ‘[]'), which allows us to get at the data is if it
were in a normal array.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:

// add to the end of the vector
d. push_back(3.142);

/[l renove fromthe end of the vector
doubl e x = d. pop_back();

* The std::vector class has methods which add to or
remove from the back of an array.

* Performance is good — it is not uncommon to build up a
large array one element at a time.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:

[/ 1nsert at 3 fromthe front
d.insert(d.begin()+3, 2.718);

/] delete fromthree fromthe end
d.delete (d.end()-2)

* The std::vector class has methods to insert and deletes
at arbitrary positions in the list.

* (There are performance overheads of course — a linked
list may be better).

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)
® e.g.std::vector:

[/ sort the |I st
std::sort(d.begin(), d.end());

* The std::sort algorithm is the most efficient algorithm
kKnown.

* We usually want to sort by key: Make
std::vector<std:: pair<keytype, dat atype> >
containing the list of keys and data, and apply a
std::sort.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Polymorphism: (templates)

* Crystallographic examples from Clipper:

— A crystallographic map can contain any sort of data:
Xmap<f | oat >

Xmap<i nt >
Xmap<H st ogr anp

— Reflection data can be of any one of a range or

predefined or user-defined types, e.g.
HKL dat a<F_si gF<fl oat> >

HKL dat a<F_phi <doubl e> >

HKL dat a<ABCD<f | oat > >

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Part 4: Odds and ends.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Nested classes:

* A class can be defined inside another class. This is

useful for:

— Classes which are only used internally by another class.

— Classes which are only used in conjunction with another
class.

— Template programming, when you want to use a bundle
of classes for a template type, you can put them inside
another class.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++

Nested classes:
* QOuter class is treated like a namespace:

Class Quter {

Cl ass I nner {

L
b

Quter x;
Quter::lnner vy,

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

C++
* Do:

— Use encapsulaation, const etc.

- Use STL (standard template library) data structures.

— Use STL algorithms.
* Don't:
— Use memory allocation. As soon as you start using memory
allocation, your program can develop memory leaks.
* new/delete
* malloc/iree
* If there is no usable STL data structure, write one of your own
and test it to destruction.

— Use pointers, except where absolutely necessary.

* Encapsulate in STL style template classes.

Kevin Cowtan. cowtan@ysbl.vork.ac.uk Sienna/C++

mailto:cowtan@ysbl.york.ac.uk

