Clipper
|
Anisotropic orthogonal atomic displacement parameters. More...
#include <coords.h>
Public Member Functions | |
U_aniso_orth () | |
null constructor | |
U_aniso_orth (const Mat33sym<> &m) | |
constructor: from Mat33sym | |
U_aniso_orth (const ftype &u) | |
constructor: from isotropic U | |
U_aniso_orth (const ftype &u11, const ftype &u22, const ftype &u33, const ftype &u12, const ftype &u13, const ftype &u23) | |
constructor: from Uij | |
ftype | u_iso () const |
return nearest isotropic U | |
U_aniso_frac | u_aniso_frac (const Cell &cell) const |
orthogonal-fractional conversion | |
U_aniso_orth | transform (const RTop_orth &op) const |
return transformed U_aniso | |
Friends | |
U_aniso_orth | operator+ (const U_aniso_orth &u1, const U_aniso_orth &u2) |
U_aniso_orth | operator- (const U_aniso_orth &u) |
U_aniso_orth | operator* (const ftype &s, const U_aniso_orth &u) |
Anisotropic orthogonal atomic displacement parameters.
These are defined on orthogonal atomic coordinates in A-2, i.e. they are anisotropic U values.
ftype clipper::U_aniso_orth::u_iso | ( | ) | const |
return nearest isotropic U
The best isotropic U is the cube root of the determinant of the matrix of anisotropic coefficients. NOTE: This is not the conventional definition, but the mathematically correct one, and gives a better approximation to the anisotropic U (i.e. lower R-factors).
References clipper::Mat33sym<>::det().
Referenced by clipper::AtomShapeFn::init().
U_aniso_frac clipper::U_aniso_orth::u_aniso_frac | ( | const Cell & | cell | ) | const |
orthogonal-fractional conversion
cell | The cell concerned |
References clipper::Cell::matrix_frac(), and clipper::Mat33< T >::transpose().
U_aniso_orth clipper::U_aniso_orth::transform | ( | const RTop_orth & | op | ) | const |
return transformed U_aniso
The aniso U is transformed by the given RT op.
u | The aniso U. |
References clipper::Mat33< T >::inverse(), clipper::RTop< T >::rot(), clipper::Mat33< T >::transpose(), and U_aniso_orth().